These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 27935947)

  • 21. A docking interface in the cyclin Cln2 promotes multi-site phosphorylation of substrates and timely cell-cycle entry.
    Bhaduri S; Valk E; Winters MJ; Gruessner B; Loog M; Pryciak PM
    Curr Biol; 2015 Feb; 25(3):316-325. PubMed ID: 25619768
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Late-G1 cyclin-CDK activity is essential for control of cell morphogenesis in budding yeast.
    Moffat J; Andrews B
    Nat Cell Biol; 2004 Jan; 6(1):59-66. PubMed ID: 14688790
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cell cycle: bistability is needed for robust cycling.
    Ingolia N
    Curr Biol; 2005 Dec; 15(23):R961-3. PubMed ID: 16332526
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cell-cycle transitions: a common role for stoichiometric inhibitors.
    Hopkins M; Tyson JJ; Novák B
    Mol Biol Cell; 2017 Nov; 28(23):3437-3446. PubMed ID: 28931595
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cdc48p is required for the cell cycle commitment point at Start via degradation of the G1-CDK inhibitor Far1p.
    Fu X; Ng C; Feng D; Liang C
    J Cell Biol; 2003 Oct; 163(1):21-6. PubMed ID: 14557244
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Atypical regulation of a green lineage-specific B-type cyclin-dependent kinase.
    Corellou F; Camasses A; Ligat L; Peaucellier G; Bouget FY
    Plant Physiol; 2005 Jul; 138(3):1627-36. PubMed ID: 15965018
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cell cycle control by a minimal Cdk network.
    Gérard C; Tyson JJ; Coudreuse D; Novák B
    PLoS Comput Biol; 2015 Feb; 11(2):e1004056. PubMed ID: 25658582
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measurement and modeling of transcriptional noise in the cell cycle regulatory network.
    Ball DA; Adames NR; Reischmann N; Barik D; Franck CT; Tyson JJ; Peccoud J
    Cell Cycle; 2013 Oct; 12(19):3203-18. PubMed ID: 24013422
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inference of the High-Level Interaction Topology between the Metabolic and Cell-Cycle Oscillators from Single-Cell Dynamics.
    Özsezen S; Papagiannakis A; Chen H; Niebel B; Milias-Argeitis A; Heinemann M
    Cell Syst; 2019 Oct; 9(4):354-365.e6. PubMed ID: 31606371
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A low number of SIC1 mRNA molecules ensures a low noise level in cell cycle progression of budding yeast.
    Barberis M; Beck C; Amoussouvi A; Schreiber G; Diener C; Herrmann A; Klipp E
    Mol Biosyst; 2011 Oct; 7(10):2804-12. PubMed ID: 21717009
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stochastic exit from mitosis in budding yeast: model predictions and experimental observations.
    Ball DA; Ahn TH; Wang P; Chen KC; Cao Y; Tyson JJ; Peccoud J; Baumann WT
    Cell Cycle; 2011 Mar; 10(6):999-1009. PubMed ID: 21350333
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A simple time delay model for eukaryotic cell cycle.
    Srividhya J; Gopinathan MS
    J Theor Biol; 2006 Aug; 241(3):617-27. PubMed ID: 16473373
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computer evaluation of network dynamics models with application to cell cycle control in budding yeast.
    Allen NA; Chen KC; Shaffer CA; Tyson JJ; Watson LT
    Syst Biol (Stevenage); 2006 Jan; 153(1):13-21. PubMed ID: 16983831
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Securin and B-cyclin/CDK are the only essential targets of the APC.
    Thornton BR; Toczyski DP
    Nat Cell Biol; 2003 Dec; 5(12):1090-4. PubMed ID: 14634663
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A quantitative model for ordered Cdk substrate dephosphorylation during mitotic exit.
    Bouchoux C; Uhlmann F
    Cell; 2011 Nov; 147(4):803-14. PubMed ID: 22078879
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cell polarity and morphogenesis in budding yeast.
    Madden K; Snyder M
    Annu Rev Microbiol; 1998; 52():687-744. PubMed ID: 9891811
    [TBL] [Abstract][Full Text] [Related]  

  • 37. From simple to complex patterns of oscillatory behavior in a model for the mammalian cell cycle containing multiple oscillatory circuits.
    Gérard C; Goldbeter A
    Chaos; 2010 Dec; 20(4):045109. PubMed ID: 21198121
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular systems biology of Sic1 in yeast cell cycle regulation through multiscale modeling.
    Barberis M
    Adv Exp Med Biol; 2012; 736():135-67. PubMed ID: 22161326
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Few crucial links assure checkpoint efficiency in the yeast cell-cycle network.
    Stoll G; Rougemont J; Naef F
    Bioinformatics; 2006 Oct; 22(20):2539-46. PubMed ID: 16895923
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New insights into cyclins, CDKs, and cell cycle control.
    Sánchez I; Dynlacht BD
    Semin Cell Dev Biol; 2005 Jun; 16(3):311-21. PubMed ID: 15840440
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.