BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 27935963)

  • 1. Modeling and Simulating Passenger Behavior for a Station Closure in a Rail Transit Network.
    Yin H; Han B; Li D; Wu J; Sun H
    PLoS One; 2016; 11(12):e0167126. PubMed ID: 27935963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The modeling of attraction characteristics regarding passenger flow in urban rail transit network based on field theory.
    Li M; Wang Y; Jia L
    PLoS One; 2017; 12(9):e0184131. PubMed ID: 28863175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact Estimation of Unplanned Urban Rail Disruptions on Public Transport Passengers: A Multi-Agent Based Simulation Approach.
    Cong C; Li X; Yang S; Zhang Q; Lu L; Shi Y
    Int J Environ Res Public Health; 2022 Jul; 19(15):. PubMed ID: 35897417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analyzing Influencing Factors of Transfer Passenger Flow of Urban Rail Transit: A New Approach Based on Nested Logit Model Considering Transfer Choices.
    Zhu Z; Zeng J; Gong X; He Y; Qiu S
    Int J Environ Res Public Health; 2021 Aug; 18(16):. PubMed ID: 34444211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new global method for identifying urban rail transit key station during COVID-19: A case study of Beijing, China.
    Jia J; Chen Y; Wang Y; Li T; Li Y
    Physica A; 2021 Mar; 565():125578. PubMed ID: 35875203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell transmission model of dynamic assignment for urban rail transit networks.
    Xu G; Zhao S; Shi F; Zhang F
    PLoS One; 2017; 12(11):e0188874. PubMed ID: 29190682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic schedule-based assignment model for urban rail transit network with capacity constraints.
    Han B; Zhou W; Li D; Yin H
    ScientificWorldJournal; 2015; 2015():940815. PubMed ID: 25918747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of passenger satisfaction of urban multi-mode public transport.
    Zhang X; Liu H; Xu M; Mao C; Shi J; Meng G; Wu J
    PLoS One; 2020; 15(10):e0241004. PubMed ID: 33079972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization Algorithm of Urban Rail Transit Network Route Planning Using Deep Learning Technology.
    Ma Y
    Comput Intell Neurosci; 2022; 2022():2024686. PubMed ID: 35875736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on the Influence Mechanism and Space Distribution Characteristics of Rail Transit Station Area Accessibility Based on MGWR.
    Li D; Zang H; Yu D; He Q; Huang X
    Int J Environ Res Public Health; 2023 Jan; 20(2):. PubMed ID: 36674291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of Rail Passenger Flow in a Rail Station Concourse Prior to and During the COVID-19 Pandemic Using Event-Based Simulation Models and Scenarios.
    Lee J; Marinov M
    Urban Rail Transit; 2022; 8(2):99-120. PubMed ID: 35582430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Passenger flow anomaly detection in urban rail transit networks with graph convolution network-informer and Gaussian Bayes models.
    Liu B; Ma X; Tan E; Ma Z
    Philos Trans A Math Phys Eng Sci; 2023 Sep; 381(2254):20220253. PubMed ID: 37454692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of limited-stop service based on the degree of unbalance of passenger demand.
    Zhang H; Zhao S; Liu H; Liang S
    PLoS One; 2018; 13(3):e0193855. PubMed ID: 29505585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Passenger behavior in trains during emergency situations.
    Dell'Olio L; Ibeas A; Barreda R; SaƱudo R
    J Safety Res; 2013 Sep; 46():157-66. PubMed ID: 23932697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards simulation optimization of subway station considering refined passenger behaviors.
    Wang Y; Yuan R; Tong X; Bai Z; Hou Y
    PLoS One; 2024; 19(6):e0304081. PubMed ID: 38843188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CEEMDAN-IPSO-LSTM: A Novel Model for Short-Term Passenger Flow Prediction in Urban Rail Transit Systems.
    Zeng L; Li Z; Yang J; Xu X
    Int J Environ Res Public Health; 2022 Dec; 19(24):. PubMed ID: 36554314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metro passenger behaviors and their relations to metro incident involvement.
    Wan X; Li Q; Yuan J; Schonfeld PM
    Accid Anal Prev; 2015 Sep; 82():90-100. PubMed ID: 26056970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance Analysis of Stop-Skipping Scheduling Plans in Rail Transit under Time-Dependent Demand.
    Cao Z; Yuan Z; Zhang S
    Int J Environ Res Public Health; 2016 Jul; 13(7):. PubMed ID: 27420087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bi-Objective Modelling for Hazardous Materials Road-Rail Multimodal Routing Problem with Railway Schedule-Based Space-Time Constraints.
    Sun Y; Lang M; Wang D
    Int J Environ Res Public Health; 2016 Jul; 13(8):. PubMed ID: 27483294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Route choice estimation in rail transit systems using smart card data: handling vehicle schedule and walking time uncertainties.
    Tiam-Lee TJ; Henriques R
    Eur Transp Res Rev; 2022; 14(1):31. PubMed ID: 38625245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.