These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 27936015)
1. Towards Assessing the Human Trajectory Planning Horizon. Carton D; Nitsch V; Meinzer D; Wollherr D PLoS One; 2016; 11(12):e0167021. PubMed ID: 27936015 [TBL] [Abstract][Full Text] [Related]
2. Flocking of multiple mobile robots based on backstepping. Dong W IEEE Trans Syst Man Cybern B Cybern; 2011 Apr; 41(2):414-24. PubMed ID: 20709643 [TBL] [Abstract][Full Text] [Related]
3. CPG-inspired workspace trajectory generation and adaptive locomotion control for quadruped robots. Liu C; Chen Q; Wang D IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):867-80. PubMed ID: 21216715 [TBL] [Abstract][Full Text] [Related]
4. Grid-Based Mobile Robot Path Planning Using Aging-Based Ant Colony Optimization Algorithm in Static and Dynamic Environments. Ajeil FH; Ibraheem IK; Azar AT; Humaidi AJ Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32231091 [TBL] [Abstract][Full Text] [Related]
5. Integration of an adaptive swing control into a neuromuscular human walking model. Song S; Desai R; Geyer H Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4915-8. PubMed ID: 24110837 [TBL] [Abstract][Full Text] [Related]
6. Multihierarchical interactive task planning: application to mobile robotics. Galindo C; Fernández-Madrigal JA; González J IEEE Trans Syst Man Cybern B Cybern; 2008 Jun; 38(3):785-98. PubMed ID: 18558542 [TBL] [Abstract][Full Text] [Related]
7. Symbolic dynamic filtering and language measure for behavior identification of mobile robots. Mallapragada G; Ray A; Jin X IEEE Trans Syst Man Cybern B Cybern; 2012 Jun; 42(3):647-59. PubMed ID: 22067436 [TBL] [Abstract][Full Text] [Related]
8. The dynamic wave expansion neural network model for robot motion planning in time-varying environments. Lebedev DV; Steil JJ; Ritter HJ Neural Netw; 2005 Apr; 18(3):267-85. PubMed ID: 15896575 [TBL] [Abstract][Full Text] [Related]
9. Visually guided gait modifications for stepping over an obstacle: a bio-inspired approach. Silva P; Matos V; Santos CP Biol Cybern; 2014 Feb; 108(1):103-19. PubMed ID: 24469319 [TBL] [Abstract][Full Text] [Related]
10. Application of time dependent probabilistic collision state checkers in highly dynamic environments. Hernández-Aceituno J; Acosta L; Piñeiro JD PLoS One; 2015; 10(3):e0119930. PubMed ID: 25799557 [TBL] [Abstract][Full Text] [Related]
11. Dual adaptive dynamic control of mobile robots using neural networks. Bugeja MK; Fabri SG; Camilleri L IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):129-41. PubMed ID: 19150763 [TBL] [Abstract][Full Text] [Related]
12. How do walkers avoid a mobile robot crossing their way? Vassallo C; Olivier AH; Souères P; Crétual A; Stasse O; Pettré J Gait Posture; 2017 Jan; 51():97-103. PubMed ID: 27744251 [TBL] [Abstract][Full Text] [Related]
13. Bioinspired neural network for real-time cooperative hunting by multirobots in unknown environments. Ni J; Yang SX IEEE Trans Neural Netw; 2011 Dec; 22(12):2062-77. PubMed ID: 22042152 [TBL] [Abstract][Full Text] [Related]
14. Modeling human behaviors and reactions under dangerous environment. Kang J; Wright DK; Qin SF; Zhao Y Biomed Sci Instrum; 2005; 41():265-70. PubMed ID: 15850116 [TBL] [Abstract][Full Text] [Related]
15. Leader-following formation of switching multirobot systems via internal model. Wang X; Ni W; Wang X IEEE Trans Syst Man Cybern B Cybern; 2012 Jun; 42(3):817-26. PubMed ID: 22262683 [TBL] [Abstract][Full Text] [Related]
16. Trajectory Planner CDT-RRT* for Car-Like Mobile Robots toward Narrow and Cluttered Environments. Kwon H; Cha D; Seong J; Lee J; Chung W Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300569 [TBL] [Abstract][Full Text] [Related]
17. Strategies of locomotor collision avoidance. Basili P; Sağlam M; Kruse T; Huber M; Kirsch A; Glasauer S Gait Posture; 2013 Mar; 37(3):385-90. PubMed ID: 22975461 [TBL] [Abstract][Full Text] [Related]
18. Impact dynamics in biped locomotion analysis: two modelling and implementation approaches. Addi K; Rodić AD Math Biosci Eng; 2010 Jul; 7(3):479-504. PubMed ID: 20578782 [TBL] [Abstract][Full Text] [Related]
19. Planning Motions and Placements for Virtual Demonstrators. Huang Y; Kallmann M IEEE Trans Vis Comput Graph; 2016 May; 22(5):1568-79. PubMed ID: 27045912 [TBL] [Abstract][Full Text] [Related]
20. Generalized sampling-based motion planners. Chakravorty S; Kumar S IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):855-66. PubMed ID: 21278023 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]