These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 27936190)

  • 61. RovA, a global regulator of Yersinia pestis, specifically required for bubonic plague.
    Cathelyn JS; Crosby SD; Lathem WW; Goldman WE; Miller VL
    Proc Natl Acad Sci U S A; 2006 Sep; 103(36):13514-9. PubMed ID: 16938880
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Characterization of outer membrane proteins of Yersinia pestis and Yersinia pseudotuberculosis strains isolated from India.
    Khushiramani R; Tuteja U; Shukla J; Batra HV
    Indian J Exp Biol; 2004 May; 42(5):508-14. PubMed ID: 15233478
    [TBL] [Abstract][Full Text] [Related]  

  • 63. PhoP and OxyR transcriptional regulators contribute to Yersinia pestis virulence and survival within Galleria mellonella.
    Erickson DL; Russell CW; Johnson KL; Hileman T; Stewart RM
    Microb Pathog; 2011 Dec; 51(6):389-95. PubMed ID: 21964409
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Development of real-time PCR assays for specific detection of hmsH, hmsF, hmsR, and irp2 located within the 102-kb pgm locus of Yersinia pestis.
    Gaddy CE; Cuevas PF; Hartman LJ; Howe GB; Worsham PL; Minogue TD
    Mol Cell Probes; 2014; 28(5-6):288-95. PubMed ID: 25261118
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Intracellular signalling and cytoskeletal rearrangement involved in Yersinia pestis plasminogen activator (Pla) mediated HeLa cell invasion.
    Benedek O; Nagy G; Emody L
    Microb Pathog; 2004 Jul; 37(1):47-54. PubMed ID: 15194160
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Silencing and reactivation of urease in Yersinia pestis is determined by one G residue at a specific position in the ureD gene.
    Sebbane F; Devalckenaere A; Foulon J; Carniel E; Simonet M
    Infect Immun; 2001 Jan; 69(1):170-6. PubMed ID: 11119503
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Genetic analysis of the 9.5-kilobase virulence plasmid of Yersinia pestis.
    Sodeinde OA; Goguen JD
    Infect Immun; 1988 Oct; 56(10):2743-8. PubMed ID: 2843470
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Direct transcriptional control of the plasminogen activator gene of Yersinia pestis by the cyclic AMP receptor protein.
    Kim TJ; Chauhan S; Motin VL; Goh EB; Igo MM; Young GM
    J Bacteriol; 2007 Dec; 189(24):8890-900. PubMed ID: 17933899
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Identification of laminin-binding motifs of Yersinia pestis plasminogen activator by phage display.
    Benedek O; Khan AS; Schneider G; Nagy G; Autar R; Pieters RJ; Emody L
    Int J Med Microbiol; 2005 Jun; 295(2):87-98. PubMed ID: 15969469
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Fibrinolytic and procoagulant activities of Yersinia pestis and Salmonella enterica.
    Korhonen TK
    J Thromb Haemost; 2015 Jun; 13 Suppl 1():S115-20. PubMed ID: 26149012
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Infectivity and virulence of nonpesticinogenic Pasteurella pestis.
    Surgalla MJ; Beesley ED
    Infect Immun; 1971 Oct; 4(4):416-8. PubMed ID: 5154889
    [TBL] [Abstract][Full Text] [Related]  

  • 72. [The significance of pesticin 1 for the virulence and immunogenicity of Yersinia pestis].
    Grebtsova NN; Cherniavskaia AS; Lebedeva SA
    Zh Mikrobiol Epidemiol Immunobiol; 1991 Jul; (7):8-11. PubMed ID: 1659072
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A Yersinia pestis-specific DNA fragment encodes temperature-dependent coagulase and fibrinolysin-associated phenotypes.
    McDonough KA; Falkow S
    Mol Microbiol; 1989 Jun; 3(6):767-75. PubMed ID: 2526282
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The omptins of Yersinia pestis and Salmonella enterica cleave the reactive center loop of plasminogen activator inhibitor 1.
    Haiko J; Laakkonen L; Juuti K; Kalkkinen N; Korhonen TK
    J Bacteriol; 2010 Sep; 192(18):4553-61. PubMed ID: 20639337
    [TBL] [Abstract][Full Text] [Related]  

  • 75. [The virulence of Yersinia pestis strains in serial-passage in guinea pig peritoneal macrophages].
    Doroshenko EP; Vasil'eva GI; Kiseleva AK
    Zh Mikrobiol Epidemiol Immunobiol; 1996; (1):14-6. PubMed ID: 8820669
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Antigenic and phenotypic modifications of Yersinia pestis under calcium and glucose concentrations simulating the mammalian bloodstream environment.
    Feodorova VA; Golova AB
    J Med Microbiol; 2005 May; 54(Pt 5):435-441. PubMed ID: 15824419
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Legionella pneumophila exhibits plasminogen activator activity.
    Vranckx L; De Buck E; Anné J; Lammertyn E
    Microbiology (Reading); 2007 Nov; 153(Pt 11):3757-3765. PubMed ID: 17975084
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Substrates of the plasminogen activator protease of Yersinia pestis.
    Caulfield AJ; Lathem WW
    Adv Exp Med Biol; 2012; 954():253-60. PubMed ID: 22782771
    [No Abstract]   [Full Text] [Related]  

  • 79. [Changes in the "latent" virulence of a vaccinal strain of Yersinia pestis multiplying within macrophages].
    Vasil'eva GI; Doroshenko EP; Kiseleva AK
    Zh Mikrobiol Epidemiol Immunobiol; 1988 Sep; (9):63-6. PubMed ID: 3206961
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Prevalence of ompT among Escherichia coli isolates of human origin.
    Lundrigan MD; Webb RM
    FEMS Microbiol Lett; 1992 Oct; 76(1-2):51-6. PubMed ID: 1427004
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.