These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 27936324)

  • 1. Influence of Thermal Treatments on the Evolution of Conductive Paths in Carbon Nanotube-Al
    Fan B; He D; Liu Y; Bai J
    Langmuir; 2017 Sep; 33(38):9680-9686. PubMed ID: 27936324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of carbon nanotube dispersion on glass transition in cross-linked epoxy-carbon nanotube nanocomposites: role of interfacial interactions.
    Khare KS; Khare R
    J Phys Chem B; 2013 Jun; 117(24):7444-54. PubMed ID: 23691970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymer Composite Containing Carbon Nanotubes and their Applications.
    Park SH; Bae J
    Recent Pat Nanotechnol; 2017 Jul; 11(2):109-115. PubMed ID: 27978788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Sensing Carbon Nanotube Composites Exposed to Glass Transition Temperature.
    Jang SH; Li LY
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31936072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of carbon nanotube (CNT) functionalization in Epoxy-CNT composites.
    Roy S; Petrova RS; Mitra S
    Nanotechnol Rev; 2018 Dec; 7(6):475-485. PubMed ID: 30637182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of carbon nanotube functionalization on mechanical and thermal properties of cross-linked epoxy-carbon nanotube nanocomposites: role of strengthening the interfacial interactions.
    Khare KS; Khabaz F; Khare R
    ACS Appl Mater Interfaces; 2014 May; 6(9):6098-110. PubMed ID: 24606164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Key Role of the Dispersion of Carbon Nanotubes (CNTs) within Epoxy Networks on their Ability to Release.
    Pras M; Gérard JF; Golanski L; Quintard G; Duchet-Rumeau J
    Polymers (Basel); 2020 Oct; 12(11):. PubMed ID: 33138127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of Electrically Conductive Structural Composites by Modulating Aligned CVD-Grown Carbon Nanotube Length on Glass Fibers.
    He D; Fan B; Zhao H; Lu X; Yang M; Liu Y; Bai J
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2948-2958. PubMed ID: 28056505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, Development and Evaluation of Thermal Properties of Polysulphone-CNT/GNP Nanocomposites.
    Irshad HM; Hakeem AS; Raza K; Baroud TN; Ehsan MA; Ali S; Tahir MS
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silane treatment of carbon nanotubes and its effect on the tribological behavior of carbon nanotube/epoxy nanocomposites.
    Lee JH; Rhee KY
    J Nanosci Nanotechnol; 2009 Dec; 9(12):6948-52. PubMed ID: 19908704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MoS2 nanolayers grown on carbon nanotubes: an advanced reinforcement for epoxy composites.
    Zhou K; Liu J; Shi Y; Jiang S; Wang D; Hu Y; Gui Z
    ACS Appl Mater Interfaces; 2015 Mar; 7(11):6070-81. PubMed ID: 25742464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructure and Thermal Conductivity of Carbon Nanotube Reinforced Cu Composites.
    Chen P; Zhang J; Shen Q; Luo G; Dai Y; Wang C; Li M; Zhang L
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2447-452. PubMed ID: 29648750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of polymer based nanocomposites with carbon nanotubes.
    Ciecierska E; Boczkowska A; Kurzydłowski KJ
    J Nanosci Nanotechnol; 2014 Apr; 14(4):2690-9. PubMed ID: 24734681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of carbon nanotube addition on the wear behavior of basalt/epoxy woven composites.
    Kim MT; Rhee KY; Lee BH; Kim CJ
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5631-5. PubMed ID: 23882807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers.
    Liu H; Gao J; Huang W; Dai K; Zheng G; Liu C; Shen C; Yan X; Guo J; Guo Z
    Nanoscale; 2016 Jul; 8(26):12977-89. PubMed ID: 27304516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of different multi-walled carbon nanotubes on the X-band microwave absorption of their epoxy nanocomposites.
    Che BD; Nguyen BQ; Nguyen LT; Nguyen HT; Nguyen VQ; Van Le T; Nguyen NH
    Chem Cent J; 2015; 9():10. PubMed ID: 25763100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrically conductive epoxy nanocomposites with expanded graphite/carbon nanotube hybrid fillers prepared by direct hybridization.
    Yu L; Kang H; Lim YS; Lee CS; Shin K; Park JS; Han JH
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9139-42. PubMed ID: 25971025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale Structure-Property Relationships of Polyacrylonitrile/CNT Composites as a Function of Polymer Crystallinity and CNT Diameter.
    Gissinger JR; Pramanik C; Newcomb B; Kumar S; Heinz H
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1017-1027. PubMed ID: 29231715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites.
    Bekyarova E; Thostenson ET; Yu A; Kim H; Gao J; Tang J; Hahn HT; Chou TW; Itkis ME; Haddon RC
    Langmuir; 2007 Mar; 23(7):3970-4. PubMed ID: 17326671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical and Water Uptake Properties of Epoxy Nanocomposites with Surfactant-Modified Functionalized Multiwalled Carbon Nanotubes.
    Uthaman A; Lal HM; Li C; Xian G; Thomas S
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34067135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.