BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 27936510)

  • 1. Systematic evaluation of CS-Rosetta for membrane protein structure prediction with sparse NOE restraints.
    Reichel K; Fisette O; Braun T; Lange OF; Hummer G; Schäfer LV
    Proteins; 2017 May; 85(5):812-826. PubMed ID: 27936510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sparse pseudocontact shift NMR data obtained from a non-canonical amino acid-linked lanthanide tag improves integral membrane protein structure prediction.
    Ledwitch KV; Künze G; McKinney JR; Okwei E; Larochelle K; Pankewitz L; Ganguly S; Darling HL; Coin I; Meiler J
    J Biomol NMR; 2023 Jun; 77(3):69-82. PubMed ID: 37016190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated Structural Biology for α-Helical Membrane Protein Structure Determination.
    Xia Y; Fischer AW; Teixeira P; Weiner B; Meiler J
    Structure; 2018 Apr; 26(4):657-666.e2. PubMed ID: 29526436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of sparse NMR restraints to large-scale protein structure prediction.
    Li W; Zhang Y; Skolnick J
    Biophys J; 2004 Aug; 87(2):1241-8. PubMed ID: 15298926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving prediction of helix-helix packing in membrane proteins using predicted contact numbers as restraints.
    Li B; Mendenhall J; Nguyen ED; Weiner BE; Fischer AW; Meiler J
    Proteins; 2017 Jul; 85(7):1212-1221. PubMed ID: 28263405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the disulfide bond generating membrane protein DsbB in the lipid bilayer.
    Tang M; Nesbitt AE; Sperling LJ; Berthold DA; Schwieters CD; Gennis RB; Rienstra CM
    J Mol Biol; 2013 May; 425(10):1670-82. PubMed ID: 23416557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining Evolutionary Covariance and NMR Data for Protein Structure Determination.
    Huang YJ; Brock KP; Ishida Y; Swapna GVT; Inouye M; Marks DS; Sander C; Montelione GT
    Methods Enzymol; 2019; 614():363-392. PubMed ID: 30611430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein loop closure using orientational restraints from NMR data.
    Tripathy C; Zeng J; Zhou P; Donald BR
    Proteins; 2012 Feb; 80(2):433-53. PubMed ID: 22161780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hybrid NMR/SAXS-based approach for discriminating oligomeric protein interfaces using Rosetta.
    Rossi P; Shi L; Liu G; Barbieri CM; Lee HW; Grant TD; Luft JR; Xiao R; Acton TB; Snell EH; Montelione GT; Baker D; Lange OF; Sgourakis NG
    Proteins; 2015 Feb; 83(2):309-17. PubMed ID: 25388768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid protein fold determination using unassigned NMR data.
    Meiler J; Baker D
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15404-9. PubMed ID: 14668443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the structural quality of the CASD-NMR 2013 entries.
    Ragan TJ; Fogh RH; Tejero R; Vranken W; Montelione GT; Rosato A; Vuister GW
    J Biomol NMR; 2015 Aug; 62(4):527-40. PubMed ID: 26032236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homology modeling of larger proteins guided by chemical shifts.
    Shen Y; Bax A
    Nat Methods; 2015 Aug; 12(8):747-50. PubMed ID: 26053889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical shift-based methods in NMR structure determination.
    Nerli S; McShan AC; Sgourakis NG
    Prog Nucl Magn Reson Spectrosc; 2018; 106-107():1-25. PubMed ID: 31047599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure determination of noncanonical RNA motifs guided by ¹H NMR chemical shifts.
    Sripakdeevong P; Cevec M; Chang AT; Erat MC; Ziegeler M; Zhao Q; Fox GE; Gao X; Kennedy SD; Kierzek R; Nikonowicz EP; Schwalbe H; Sigel RK; Turner DH; Das R
    Nat Methods; 2014 Apr; 11(4):413-6. PubMed ID: 24584194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physics-based method to validate and repair flaws in protein structures.
    Martin OA; Arnautova YA; Icazatti AA; Scheraga HA; Vila JA
    Proc Natl Acad Sci U S A; 2013 Oct; 110(42):16826-31. PubMed ID: 24082119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BCL::MP-fold: Membrane protein structure prediction guided by EPR restraints.
    Fischer AW; Alexander NS; Woetzel N; Karakas M; Weiner BE; Meiler J
    Proteins; 2015 Nov; 83(11):1947-62. PubMed ID: 25820805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational prediction of atomic structures of helical membrane proteins aided by EM maps.
    Kovacs JA; Yeager M; Abagyan R
    Biophys J; 2007 Sep; 93(6):1950-9. PubMed ID: 17496035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational modeling of membrane proteins.
    Koehler Leman J; Ulmschneider MB; Gray JJ
    Proteins; 2015 Jan; 83(1):1-24. PubMed ID: 25355688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal bundling of transmembrane helices using sparse distance constraints.
    Sale K; Faulon JL; Gray GA; Schoeniger JS; Young MM
    Protein Sci; 2004 Oct; 13(10):2613-27. PubMed ID: 15340162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Restraint Validation of Biomolecular Structures Determined by NMR in the Protein Data Bank.
    Baskaran K; Ploskon E; Tejero R; Yokochi M; Harrus D; Liang Y; Peisach E; Persikova I; Ramelot TA; Sekharan M; Tolchard J; Westbrook JD; Bardiaux B; Schwieters CD; Patwardhan A; Velankar S; Burley SK; Kurisu G; Hoch JC; Montelione GT; Vuister GW; Young JY
    bioRxiv; 2024 Jan; ():. PubMed ID: 38328042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.