These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 27936542)

  • 1. Contact Electrification of Individual Dielectric Microparticles Measured by Optical Tweezers in Air.
    Park H; LeBrun TW
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34904-34913. PubMed ID: 27936542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical Trap Loading of Dielectric Microparticles In Air.
    Park H; LeBrun TW
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28190055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Evaluation System for the Contact Electrification of a Single Microparticle Using Microelectromechanical-Based Actuated Tweezers.
    Yamaguchi D
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29874856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling the kinetics of contact electrification with patterned surfaces.
    Thomas SW; Vella SJ; Dickey MD; Kaufman GK; Whitesides GM
    J Am Chem Soc; 2009 Jul; 131(25):8746-7. PubMed ID: 19499916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical manipulation of charged microparticles in polar fluids.
    Pesce G; Lisbino V; Rusciano G; Sasso A
    Electrophoresis; 2013 Dec; 34(22-23):3141-9. PubMed ID: 24166681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charging of multiple interacting particles by contact electrification.
    Soh S; Liu H; Cademartiri R; Yoon HJ; Whitesides GM
    J Am Chem Soc; 2014 Sep; 136(38):13348-54. PubMed ID: 25171262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct probing of contact electrification by using optical second harmonic generation technique.
    Chen X; Taguchi D; Manaka T; Iwamoto M; Wang ZL
    Sci Rep; 2015 Aug; 5():13019. PubMed ID: 26272162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro particle launcher/cleaner based on optical trapping technology.
    Liu Z; Liang P; Zhang Y; Zhang Y; Zhao E; Yang J; Yuan L
    Opt Express; 2015 Apr; 23(7):8650-8. PubMed ID: 25968703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring the charge density of a tapered optical fiber using trapped microparticles.
    Kamitani K; Muranaka T; Takashima H; Fujiwara M; Tanaka U; Takeuchi S; Urabe S
    Opt Express; 2016 Mar; 24(5):4672-4679. PubMed ID: 29092296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of asymmetrically dynamic motion of single colloidal particles in a polarized optical trap.
    Xie C; Dinno MA; Li YQ
    Opt Express; 2005 Mar; 13(5):1621-7. PubMed ID: 19495037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manipulating nanoscale contact electrification by an applied electric field.
    Zhou YS; Wang S; Yang Y; Zhu G; Niu S; Lin ZH; Liu Y; Wang ZL
    Nano Lett; 2014 Mar; 14(3):1567-72. PubMed ID: 24479730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New instrument based on electrostatic sensor array for measuring tribo-electrification charging due to single particle impacts.
    Guo J; Zuo H; Zhong Z; Jiang H
    Rev Sci Instrum; 2021 Sep; 92(9):095001. PubMed ID: 34598497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electric field induced charging of colloidal particles in a nonpolar liquid.
    Schreuer C; Vandewiele S; Strubbe F; Neyts K; Beunis F
    J Colloid Interface Sci; 2018 Apr; 515():248-254. PubMed ID: 29351854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Irreproducibility in the triboelectric charging of insulators: evidence of a non-monotonic charge versus contact time relationship.
    Zhang J; Su C; Rogers FJM; Darwish N; Coote ML; Ciampi S
    Phys Chem Chem Phys; 2020 May; 22(20):11671-11677. PubMed ID: 32406440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical Simulations of the Digital Microfluidic Manipulation of Single Microparticles.
    Lan C; Pal S; Li Z; Ma Y
    Langmuir; 2015 Sep; 31(35):9636-45. PubMed ID: 26241832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Higher order microfibre modes for dielectric particle trapping and propulsion.
    Maimaiti A; Truong VG; Sergides M; Gusachenko I; Nic Chormaic S
    Sci Rep; 2015 Mar; 5():9077. PubMed ID: 25766925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potentialities of laser trapping and manipulation of blood cells in hemorheologic research.
    Priezzhev A; Lee K
    Clin Hemorheol Microcirc; 2016; 64(4):587-592. PubMed ID: 27767983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precision measurement of tribocharging in acoustically levitated sub-millimeter grains.
    Kline AG; Lim MX; Jaeger HM
    Rev Sci Instrum; 2020 Feb; 91(2):023908. PubMed ID: 32113436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-propelled round-trip motion of Janus particles in static line optical tweezers.
    Liu J; Guo HL; Li ZY
    Nanoscale; 2016 Dec; 8(47):19894-19900. PubMed ID: 27878196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of microparticles trapped in a perfect vortex beam.
    Chen M; Mazilu M; Arita Y; Wright EM; Dholakia K
    Opt Lett; 2013 Nov; 38(22):4919-22. PubMed ID: 24322166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.