These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 27936557)

  • 1. Molecular Insights into the Complex Relationship between Capacitance and Pore Morphology in Nanoporous Carbon-based Supercapacitors.
    Pak AJ; Hwang GS
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34659-34667. PubMed ID: 27936557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-Faradaic Energy Storage by Room Temperature Ionic Liquids in Nanoporous Electrodes.
    Vatamanu J; Vatamanu M; Bedrov D
    ACS Nano; 2015 Jun; 9(6):5999-6017. PubMed ID: 26038979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the Atomistic Nature of Capacitance Enhancement Generated by Ionic Liquid Electrolyte Confined in Subnanometer Pores.
    Xing L; Vatamanu J; Borodin O; Bedrov D
    J Phys Chem Lett; 2013 Jan; 4(1):132-40. PubMed ID: 26291225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulations of atomically flat and nanoporous electrodes with a molten salt electrolyte.
    Vatamanu J; Borodin O; Smith GD
    Phys Chem Chem Phys; 2010 Jan; 12(1):170-82. PubMed ID: 20024457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes.
    Huang J; Sumpter BG; Meunier V
    Chemistry; 2008; 14(22):6614-26. PubMed ID: 18576455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin of Enhanced Performance in Nanoporous Electrical Double Layer Capacitors: Insights on Micropore Structure and Electrolyte Composition from Molecular Simulations.
    Uralcan B; Uralcan IB
    ACS Appl Mater Interfaces; 2022 Apr; 14(14):16800-16808. PubMed ID: 35377144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can ionophobic nanopores enhance the energy storage capacity of electric-double-layer capacitors containing nonaqueous electrolytes?
    Lian C; Liu H; Henderson D; Wu J
    J Phys Condens Matter; 2016 Oct; 28(41):414005. PubMed ID: 27546561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67.
    Torad NL; Salunkhe RR; Li Y; Hamoudi H; Imura M; Sakka Y; Hu CC; Yamauchi Y
    Chemistry; 2014 Jun; 20(26):7895-900. PubMed ID: 24788922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capacitive energy storage in nanostructured carbon-electrolyte systems.
    Simon P; Gogotsi Y
    Acc Chem Res; 2013 May; 46(5):1094-103. PubMed ID: 22670843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relation between the ion size and pore size for an electric double-layer capacitor.
    Largeot C; Portet C; Chmiola J; Taberna PL; Gogotsi Y; Simon P
    J Am Chem Soc; 2008 Mar; 130(9):2730-1. PubMed ID: 18257568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon-carbon supercapacitors: Beyond the average pore size or how electrolyte confinement and inaccessible pores affect the capacitance.
    Lahrar EH; Simon P; Merlet C
    J Chem Phys; 2021 Nov; 155(18):184703. PubMed ID: 34773950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the influence of the pore size and surface area of activated carbons on the energy storage of electric double layer capacitors with a new potentially universally applicable capacitor model.
    Heimböckel R; Hoffmann F; Fröba M
    Phys Chem Chem Phys; 2019 Feb; 21(6):3122-3133. PubMed ID: 30675602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling the potential and pore-size dependent capacitance of slit-shaped graphitic carbon pores in aqueous electrolytes.
    Kalluri RK; Biener MM; Suss ME; Merrill MD; Stadermann M; Santiago JG; Baumann TF; Biener J; Striolo A
    Phys Chem Chem Phys; 2013 Feb; 15(7):2309-20. PubMed ID: 23295944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Confinement and Ion Adsorption in Ionic Liquid Supercapacitors with Nanoporous Electrodes.
    Lian Z; Chao H; Wang ZG
    ACS Nano; 2021 Jul; 15(7):11724-11733. PubMed ID: 34228448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on Possible Ion-Confinement in Nanopore for Enhanced Supercapacitor Performance in 4V EMIBF
    Deng J; Li J; Xiao Z; Song S; Li L
    Nanomaterials (Basel); 2019 Nov; 9(12):. PubMed ID: 31766673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores.
    Kim T; Jung G; Yoo S; Suh KS; Ruoff RS
    ACS Nano; 2013 Aug; 7(8):6899-905. PubMed ID: 23829569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unusual effects of solvent polarity on capacitance for organic electrolytes in a nanoporous electrode.
    Jiang DE; Wu J
    Nanoscale; 2014 May; 6(10):5545-50. PubMed ID: 24733527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbons and electrolytes for advanced supercapacitors.
    Béguin F; Presser V; Balducci A; Frackowiak E
    Adv Mater; 2014 Apr; 26(14):2219-51, 2283. PubMed ID: 24497347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ideal porous structure of EDLC carbon electrodes with extremely high capacitance.
    Urita K; Urita C; Fujita K; Horio K; Yoshida M; Moriguchi I
    Nanoscale; 2017 Oct; 9(40):15643-15649. PubMed ID: 28993824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer.
    Chmiola J; Yushin G; Gogotsi Y; Portet C; Simon P; Taberna PL
    Science; 2006 Sep; 313(5794):1760-3. PubMed ID: 16917025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.