These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 27936580)

  • 1. Matchmaking in Catalyst-Transfer Polycondensation: Optimizing Catalysts based on Mechanistic Insight.
    Leone AK; McNeil AJ
    Acc Chem Res; 2016 Dec; 49(12):2822-2831. PubMed ID: 27936580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diversifying Cross-Coupling Strategies, Catalysts and Monomers for the Controlled Synthesis of Conjugated Polymers.
    Baker MA; Tsai CH; Noonan KJT
    Chemistry; 2018 Sep; 24(50):13078-13088. PubMed ID: 29486100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precision Synthesis of Conjugated Polymers Using the Kumada Methodology.
    Cheng S; Zhao R; Seferos DS
    Acc Chem Res; 2021 Nov; 54(22):4203-4214. PubMed ID: 34726058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The History of Palladium-Catalyzed Cross-Couplings Should Inspire the Future of Catalyst-Transfer Polymerization.
    Leone AK; Mueller EA; McNeil AJ
    J Am Chem Soc; 2018 Nov; 140(45):15126-15139. PubMed ID: 30383365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Limitations of Using Small Molecules to Identify Catalyst-Transfer Polycondensation Reactions.
    Bryan ZJ; Hall AO; Zhao CT; Chen J; McNeil AJ
    ACS Macro Lett; 2016 Jan; 5(1):69-72. PubMed ID: 35668581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ring-Walking in Catalyst-Transfer Polymerization.
    Leone AK; Goldberg PK; McNeil AJ
    J Am Chem Soc; 2018 Jun; 140(25):7846-7850. PubMed ID: 29905466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring Ethylene/Polar Vinyl Monomer Copolymerizations Using Ni and Pd α-Diimine Catalysts.
    Chen Z; Brookhart M
    Acc Chem Res; 2018 Aug; 51(8):1831-1839. PubMed ID: 30028122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of Functional Polyacetylenes via Cyclopolymerization of Diyne Monomers with Grubbs-type Catalysts.
    Peterson GI; Yang S; Choi TL
    Acc Chem Res; 2019 Apr; 52(4):994-1005. PubMed ID: 30689346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AB- Versus AA+BB-Suzuki Polycondensation: A Palladium/Tris(tert-butyl)phosphine Catalyst Can Outperform Conventional Catalysts.
    Zhang K; Tkachov R; Ditte K; Kiriy N; Kiriy A; Voit B
    Macromol Rapid Commun; 2020 Jan; 41(1):e1900521. PubMed ID: 31788895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neutral Nickel(II) Catalysts: From Hyperbranched Oligomers to Nanocrystal-Based Materials.
    Mecking S; Schnitte M
    Acc Chem Res; 2020 Nov; 53(11):2738-2752. PubMed ID: 33094994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precision control of radical polymerization via transition metal catalysis: from dormant species to designed catalysts for precision functional polymers.
    Ouchi M; Terashima T; Sawamoto M
    Acc Chem Res; 2008 Sep; 41(9):1120-32. PubMed ID: 18793026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Palladium-catalyzed chain-growth polycondensation of AB-type monomers: high catalyst turnover and polymerization rates.
    Tkachov R; Senkovskyy V; Beryozkina T; Boyko K; Bakulev V; Lederer A; Sahre K; Voit B; Kiriy A
    Angew Chem Int Ed Engl; 2014 Feb; 53(9):2402-7. PubMed ID: 24520053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multinuclear group 4 catalysis: olefin polymerization pathways modified by strong metal-metal cooperative effects.
    McInnis JP; Delferro M; Marks TJ
    Acc Chem Res; 2014 Aug; 47(8):2545-57. PubMed ID: 25075755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and application of FI catalysts for olefin polymerization: unique catalysis and distinctive polymer formation.
    Makio H; Fujita T
    Acc Chem Res; 2009 Oct; 42(10):1532-44. PubMed ID: 19588950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of activation of a hafnium pyridyl-amide olefin polymerization catalyst: ligand modification by monomer.
    Froese RD; Hustad PD; Kuhlman RL; Wenzel TT
    J Am Chem Soc; 2007 Jun; 129(25):7831-40. PubMed ID: 17542583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rethinking Catalyst Trapping in Ni-Catalyzed Thieno[3,2-
    Hannigan MD; Tami JL; Zimmerman PM; McNeil AJ
    Macromolecules; 2022 Dec; 55(24):10821-10830. PubMed ID: 37396500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalyst-site-controlled coordination polymerization of polar vinyl monomers to highly syndiotactic polymers.
    Zhang Y; Ning Y; Caporaso L; Cavallo L; Chen EY
    J Am Chem Soc; 2010 Mar; 132(8):2695-709. PubMed ID: 20121281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of halogens in the catalyst transfer polycondensation for π-conjugated polymers.
    Ye S; Foster SM; Pollit AA; Cheng S; Seferos DS
    Chem Sci; 2019 Feb; 10(7):2075-2080. PubMed ID: 30842865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kumada Catalyst-Transfer Polycondensation: Mechanism, Opportunities, and Challenges.
    Kiriy A; Senkovskyy V; Sommer M
    Macromol Rapid Commun; 2011 Oct; 32(19):1503-17. PubMed ID: 21800394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of Preferential π-Binding in Catalyst-Transfer Polycondensation of Thiazole Derivatives.
    Smith ML; Leone AK; Zimmerman PM; McNeil AJ
    ACS Macro Lett; 2016 Dec; 5(12):1411-1415. PubMed ID: 35651203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.