BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 27936601)

  • 1. Regioregular Alternating Polyampholytes Have Enhanced Biomimetic Ice Recrystallization Activity Compared to Random Copolymers and the Role of Side Chain versus Main Chain Hydrophobicity.
    Stubbs C; Lipecki J; Gibson MI
    Biomacromolecules; 2017 Jan; 18(1):295-302. PubMed ID: 27936601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational, yet simple, design and synthesis of an antifreeze-protein inspired polymer for cellular cryopreservation.
    Mitchell DE; Cameron NR; Gibson MI
    Chem Commun (Camb); 2015 Aug; 51(65):12977-80. PubMed ID: 26176027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Block Copolymerization on the Antifreeze Protein Mimetic Ice Recrystallization Inhibition Activity of Poly(vinyl alcohol).
    Congdon TR; Notman R; Gibson MI
    Biomacromolecules; 2016 Sep; 17(9):3033-9. PubMed ID: 27476873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ice recrystallization inhibition activity in bile salts.
    Wang Z; Li M; Wu T
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):728-738. PubMed ID: 36193617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antifreeze (glyco)protein mimetic behavior of poly(vinyl alcohol): detailed structure ice recrystallization inhibition activity study.
    Congdon T; Notman R; Gibson MI
    Biomacromolecules; 2013 May; 14(5):1578-86. PubMed ID: 23534826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of antifreeze activity and the effect upon post-thaw HepG2 cell viability after cryopreservation.
    Capicciotti CJ; Poisson JS; Boddy CN; Ben RN
    Cryobiology; 2015 Apr; 70(2):79-89. PubMed ID: 25595636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antifreeze proteins and their biomimetics for cell cryopreservation: Mechanism, function and application-A review.
    Wu X; Yao F; Zhang H; Li J
    Int J Biol Macromol; 2021 Dec; 192():1276-1291. PubMed ID: 34634336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(l-Ala-
    Piao Z; Park JK; Patel M; Lee HJ; Jeong B
    ACS Macro Lett; 2021 Nov; 10(11):1436-1442. PubMed ID: 35549012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptidic Antifreeze Materials: Prospects and Challenges.
    Surís-Valls R; Voets IK
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31627404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into Design of Biomimetic Glycerol-Grafted Polyol-Based Polymers for Ice Nucleation/Recrystallization Inhibition and Thermal Hysteresis Activity.
    Mousazadehkasin M; Tsavalas JG
    Biomacromolecules; 2020 Nov; 21(11):4626-4637. PubMed ID: 32820904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ice Recrystallization Inhibition Is Insufficient to Explain Cryopreservation Abilities of Antifreeze Proteins.
    Sun Y; Maltseva D; Liu J; Hooker T; Mailänder V; Ramløv H; DeVries AL; Bonn M; Meister K
    Biomacromolecules; 2022 Mar; 23(3):1214-1220. PubMed ID: 35080878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mimicking the Ice Recrystallization Activity of Biological Antifreezes. When is a New Polymer "Active"?
    Biggs CI; Stubbs C; Graham B; Fayter AER; Hasan M; Gibson MI
    Macromol Biosci; 2019 Jul; 19(7):e1900082. PubMed ID: 31087781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Impact of Salts on the Ice Recrystallization Inhibition Activity of Antifreeze (Glyco)Proteins.
    Surís-Valls R; Voets IK
    Biomolecules; 2019 Aug; 9(8):. PubMed ID: 31390745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution conformation of C-linked antifreeze glycoprotein analogues and modulation of ice recrystallization.
    Tam RY; Rowley CN; Petrov I; Zhang T; Afagh NA; Woo TK; Ben RN
    J Am Chem Soc; 2009 Nov; 131(43):15745-53. PubMed ID: 19824639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of an Ice Recrystallization-Inhibiting Polyampholyte-Containing Graft Polymer for Inhibition of Protein Aggregation.
    Rajan R; Kumar N; Matsumura K
    Biomacromolecules; 2022 Feb; 23(2):487-496. PubMed ID: 34784478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polysaccharide-Derived Ice Recrystallization Inhibitors with a Modular Design: The Case of Dextran-Based Graft Polymers.
    Wu X; Qiu Y; Chen C; Gao Y; Wang Y; Yao F; Zhang H; Li J
    Langmuir; 2022 Nov; 38(46):14097-14108. PubMed ID: 36342971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of ice crystal growth by synthetic glycopolymers: implications for the rational design of antifreeze glycoprotein mimics.
    Gibson MI; Barker CA; Spain SG; Albertin L; Cameron NR
    Biomacromolecules; 2009 Feb; 10(2):328-33. PubMed ID: 19072300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, synthesis and antifreeze properties of biomimetic peptoid oligomers.
    Zhang M; Qiu Z; Yang K; Zhou W; Liu W; Lu J; Guo L
    Chem Commun (Camb); 2023 Jun; 59(46):7028-7031. PubMed ID: 37128894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blocking rapid ice crystal growth through nonbasal plane adsorption of antifreeze proteins.
    Olijve LL; Meister K; DeVries AL; Duman JG; Guo S; Bakker HJ; Voets IK
    Proc Natl Acad Sci U S A; 2016 Apr; 113(14):3740-5. PubMed ID: 26936953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antifreeze Protein Mimetic Metallohelices with Potent Ice Recrystallization Inhibition Activity.
    Mitchell DE; Clarkson G; Fox DJ; Vipond RA; Scott P; Gibson MI
    J Am Chem Soc; 2017 Jul; 139(29):9835-9838. PubMed ID: 28715207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.