These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 27936618)

  • 1. Continuous Separation of DNA Molecules by Size Using Insulator-Based Dielectrophoresis.
    Jones PV; Salmon GL; Ros A
    Anal Chem; 2017 Feb; 89(3):1531-1539. PubMed ID: 27936618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dielectrophoresis of lambda-DNA using 3D carbon electrodes.
    Martinez-Duarte R; Camacho-Alanis F; Renaud P; Ros A
    Electrophoresis; 2013 Apr; 34(7):1113-22. PubMed ID: 23348619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A continuous DC-insulator dielectrophoretic sorter of microparticles.
    Srivastava SK; Baylon-Cardiel JL; Lapizco-Encinas BH; Minerick AR
    J Chromatogr A; 2011 Apr; 1218(13):1780-9. PubMed ID: 21338990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Length-Selective Dielectrophoretic Manipulation of Single-Walled Carbon Nanotubes.
    Rabbani MT; Schmidt CF; Ros A
    Anal Chem; 2020 Jul; 92(13):8901-8908. PubMed ID: 32447955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Device for dielectrophoretic separation and collection of nanoparticles and DNA under high conductance conditions.
    Song Y; Sonnenberg A; Heaney Y; Heller MJ
    Electrophoresis; 2015 May; 36(9-10):1107-14. PubMed ID: 25780998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dielectrophoretic separation of microalgae cells in ballast water in a microfluidic chip.
    Wang Y; Wang J; Wu X; Jiang Z; Wang W
    Electrophoresis; 2019 Mar; 40(6):969-978. PubMed ID: 30221789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concentration of Sindbis virus with optimized gradient insulator-based dielectrophoresis.
    Ding J; Lawrence RM; Jones PV; Hogue BG; Hayes MA
    Analyst; 2016 Mar; 141(6):1997-2008. PubMed ID: 26878279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lateral fluid flow fractionation using dielectrophoresis (LFFF-DEP) for size-independent, label-free isolation of circulating tumor cells.
    Waheed W; Alazzam A; Mathew B; Christoforou N; Abu-Nada E
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Jun; 1087-1088():133-137. PubMed ID: 29734073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trapping of DNA by dielectrophoresis.
    Asbury CL; Diercks AH; van den Engh G
    Electrophoresis; 2002 Aug; 23(16):2658-66. PubMed ID: 12210170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallelized continuous flow dielectrophoretic separation of DNA.
    Derksen J; Viefhues M
    Electrophoresis; 2023 Jun; 44(11-12):968-977. PubMed ID: 36205619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dielectrophoretic separation of bioparticles in microdevices: a review.
    Jubery TZ; Srivastava SK; Dutta P
    Electrophoresis; 2014 Mar; 35(5):691-713. PubMed ID: 24338825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous dielectrophoretic particle separation using a microfluidic device with 3D electrodes and vaulted obstacles.
    Jia Y; Ren Y; Jiang H
    Electrophoresis; 2015 Aug; 36(15):1744-53. PubMed ID: 25962351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A flow-through microfluidic chip for continuous dielectrophoretic separation of viable and non-viable human T-cells.
    Mustafa A; Pedone E; Marucci L; Moschou D; Lorenzo MD
    Electrophoresis; 2022 Feb; 43(3):501-508. PubMed ID: 34717293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dielectrophoresis-based 3D-focusing of microscale entities in microfluidic devices.
    Alnaimat F; Ramesh S; Alazzam A; Hilal-Alnaqbi A; Waheed W; Mathew B
    Cytometry A; 2018 Aug; 93(8):811-821. PubMed ID: 30160818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA manipulation by means of insulator-based dielectrophoresis employing direct current electric fields.
    Gallo-Villanueva RC; Rodríguez-López CE; Díaz-de-la-Garza RI; Reyes-Betanzo C; Lapizco-Encinas BH
    Electrophoresis; 2009 Dec; 30(24):4195-205. PubMed ID: 20013902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dielectrophoretic separation of micron and submicron particles: a review.
    Dash S; Mohanty S
    Electrophoresis; 2014 Sep; 35(18):2656-72. PubMed ID: 24930837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarization behavior of polystyrene particles under direct current and low-frequency (<1 kHz) electric fields in dielectrophoretic systems.
    Saucedo-Espinosa MA; Rauch MM; LaLonde A; Lapizco-Encinas BH
    Electrophoresis; 2016 Feb; 37(4):635-44. PubMed ID: 26531799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A continuous high-throughput bioparticle sorter based on 3D traveling-wave dielectrophoresis.
    Cheng IF; Froude VE; Zhu Y; Chang HC; Chang HC
    Lab Chip; 2009 Nov; 9(22):3193-201. PubMed ID: 19865725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Negative dielectrophoresis-based particle separation by size in a serpentine microchannel.
    Church C; Zhu J; Xuan X
    Electrophoresis; 2011 Feb; 32(5):527-31. PubMed ID: 21290386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.