These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1005 related articles for article (PubMed ID: 27936671)

  • 1. Fabrication of Concentrated Fish Oil Emulsions Using Dual-Channel Microfluidization: Impact of Droplet Concentration on Physical Properties and Lipid Oxidation.
    Liu F; Zhu Z; Ma C; Luo X; Bai L; Decker EA; Gao Y; McClements DJ
    J Agric Food Chem; 2016 Dec; 64(50):9532-9541. PubMed ID: 27936671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of highly concentrated oil-in-water emulsions using dual-channel microfluidization: Use of individual and mixed natural emulsifiers (saponin and lecithin).
    Luo X; Zhou Y; Bai L; Liu F; Zhang R; Zhang Z; Zheng B; Deng Y; McClements DJ
    Food Res Int; 2017 Jun; 96():103-112. PubMed ID: 28528089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical Stability, Autoxidation, and Photosensitized Oxidation of ω-3 Oils in Nanoemulsions Prepared with Natural and Synthetic Surfactants.
    Uluata S; McClements DJ; Decker EA
    J Agric Food Chem; 2015 Oct; 63(42):9333-40. PubMed ID: 26452408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization and Rheology of Concentrated Emulsions Using the Natural Emulsifiers Quillaja Saponins and Rhamnolipids.
    Li Z; Dai L; Wang D; Mao L; Gao Y
    J Agric Food Chem; 2018 Apr; 66(15):3922-3929. PubMed ID: 29595971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical and oxidative stability of high fat fish oil-in-water emulsions stabilized with sodium caseinate and phosphatidylcholine as emulsifiers.
    Yesiltas B; García-Moreno PJ; Sørensen AM; Akoh CC; Jacobsen C
    Food Chem; 2019 Mar; 276():110-118. PubMed ID: 30409573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of enzymatic degraded polysaccharides from Enteromorpha prolifera on the physical and oxidative stability of fish oil-in-water emulsions.
    Shi MJ; Wang F; Jiang H; Qian WW; Xie YY; Wei XY; Zhou T
    Food Chem; 2020 Aug; 322():126774. PubMed ID: 32305876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of curcumin in oil-in-water emulsions: Impact of emulsifier type and concentration on chemical degradation.
    Kharat M; Zhang G; McClements DJ
    Food Res Int; 2018 Sep; 111():178-186. PubMed ID: 30007674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of legume protein type and location on lipid oxidation in fish oil-in-water emulsions: Lentil, pea, and faba bean proteins.
    Gumus CE; Decker EA; McClements DJ
    Food Res Int; 2017 Oct; 100(Pt 2):175-185. PubMed ID: 28888438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The oxidative stability of omega-3 oil-in-water nanoemulsion systems suitable for functional food enrichment: A systematic review of the literature.
    Bush L; Stevenson L; Lane KE
    Crit Rev Food Sci Nutr; 2019; 59(7):1154-1168. PubMed ID: 29058947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of natural and synthetic surfactants at forming and stabilizing nanoemulsions: Tea saponin, Quillaja saponin, and Tween 80.
    Zhu Z; Wen Y; Yi J; Cao Y; Liu F; McClements DJ
    J Colloid Interface Sci; 2019 Feb; 536():80-87. PubMed ID: 30359887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of emulsifier on oxidation properties of fish oil-based structured lipid emulsions.
    Fomuso LB; Corredig M; Akoh CC
    J Agric Food Chem; 2002 May; 50(10):2957-61. PubMed ID: 11982425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Emulsifier Type, Maltodextrin, and β-Cyclodextrin on Physical and Oxidative Stability of Oil-In-Water Emulsions.
    Kibici D; Kahveci D
    J Food Sci; 2019 Jun; 84(6):1273-1280. PubMed ID: 31059587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of β-carotene nanoemulsion-based delivery systems using dual-channel microfluidization: Physical and chemical stability.
    Luo X; Zhou Y; Bai L; Liu F; Deng Y; McClements DJ
    J Colloid Interface Sci; 2017 Mar; 490():328-335. PubMed ID: 27914331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The composition and oxidative stability of vegetarian omega-3 algal oil nanoemulsions suitable for functional food enrichment.
    Lane KE; Zhou Q; Robinson S; Li W
    J Sci Food Agric; 2020 Jan; 100(2):695-704. PubMed ID: 31602647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Encapsulation of ω-3 fatty acids in nanoemulsion-based delivery systems fabricated from natural emulsifiers: Sunflower phospholipids.
    Komaiko J; Sastrosubroto A; McClements DJ
    Food Chem; 2016 Jul; 203():331-339. PubMed ID: 26948622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vitamin E Encapsulation in Plant-Based Nanoemulsions Fabricated Using Dual-Channel Microfluidization: Formation, Stability, and Bioaccessibility.
    Lv S; Gu J; Zhang R; Zhang Y; Tan H; McClements DJ
    J Agric Food Chem; 2018 Oct; 66(40):10532-10542. PubMed ID: 30240207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Interfacial Composition on Lipid and Protein Co-Oxidation in Oil-in-Water Emulsions Containing Mixed Emulisifers.
    Zhu Z; Zhao C; Yi J; Liu N; Cao Y; Decker EA; McClements DJ
    J Agric Food Chem; 2018 May; 66(17):4458-4468. PubMed ID: 29648824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of microfluidization methods for efficient production of concentrated nanoemulsions: Comparison of single- and dual-channel microfluidizers.
    Bai L; McClements DJ
    J Colloid Interface Sci; 2016 Mar; 466():206-12. PubMed ID: 26724703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical and oxidative stability of fish oil-in-water emulsions stabilized with fish protein hydrolysates.
    García-Moreno PJ; Guadix A; Guadix EM; Jacobsen C
    Food Chem; 2016 Jul; 203():124-135. PubMed ID: 26948597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antioxidant activity of alkyl gallates and glycosyl alkyl gallates in fish oil in water emulsions: relevance of their surface active properties and of the type of emulsifier.
    González MJ; Medina I; Maldonado OS; Lucas R; Morales JC
    Food Chem; 2015 Sep; 183():190-6. PubMed ID: 25863628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 51.