These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 27936677)

  • 1. Visualizing the Cu/Cu2(O) Interface Transition in Nanoparticles with Environmental Scanning Transmission Electron Microscopy.
    LaGrow AP; Ward MR; Lloyd DC; Gai PL; Boyes ED
    J Am Chem Soc; 2017 Jan; 139(1):179-185. PubMed ID: 27936677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single Atom Dynamics in Chemical Reactions.
    Boyes ED; LaGrow AP; Ward MR; Mitchell RW; Gai PL
    Acc Chem Res; 2020 Feb; 53(2):390-399. PubMed ID: 32022555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
    Stacchiola DJ
    Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ atomic-scale imaging of the metal/oxide interfacial transformation.
    Zou L; Li J; Zakharov D; Stach EA; Zhou G
    Nat Commun; 2017 Aug; 8(1):307. PubMed ID: 28824169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binary [Cu2O/MWCNT] and ternary [Cu2O/ZnO/MWCNT] nanocomposites: formation, characterization and catalytic performance in partial ethanol oxidation.
    Khanderi J; Contiu C; Engstler J; Hoffmann RC; Schneider JJ; Drochner A; Vogel H
    Nanoscale; 2011 Mar; 3(3):1102-12. PubMed ID: 21183989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron Beam Induced Enhancement and Suppression of Oxidation in Cu Nanoparticles in Environmental Scanning Transmission Electron Microscopy.
    Ziashahabi A; Elsukova A; Nilsson S; Beleggia M; Stanley Jørgensen P; Langhammer C; Kadkhodazadeh S
    ACS Nanosci Au; 2023 Oct; 3(5):389-397. PubMed ID: 37868225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible Redox Cycling of Well-Defined, Ultrasmall Cu/Cu
    Pike SD; White ER; Regoutz A; Sammy N; Payne DJ; Williams CK; Shaffer MS
    ACS Nano; 2017 Mar; 11(3):2714-2723. PubMed ID: 28286946
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Sharna S; Bahri M; Bouillet C; Rouchon V; Lambert A; Gay AS; Chiche D; Ersen O
    Nanoscale; 2021 Jun; 13(21):9747-9756. PubMed ID: 34019612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ HVEM study on copper oxidation using an improved environmental cell.
    Komatsu M; Mori H
    J Electron Microsc (Tokyo); 2005 Apr; 54(2):99-107. PubMed ID: 15994204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanospace-enhanced photoreduction for the synthesis of copper(I) oxide nanoparticles under visible-light irradiation.
    Ohkubo T; Ushio M; Urita K; Moriguchi I; Ahmmad B; Itadani A; Kuroda Y
    J Colloid Interface Sci; 2014 May; 421():165-9. PubMed ID: 24594046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porous redox-active Cu2O-SiO2 nanostructured film: preparation, characterization and application for a label-free amperometric ferritin immunosensor.
    Yang X; Yuan R; Chai Y; Zhuo Y; Hong C; Liu Z; Su H
    Talanta; 2009 Apr; 78(2):596-601. PubMed ID: 19203630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled growth of Cu2O nanoparticles bound to cotton fibres.
    Errokh A; Ferraria AM; Conceição DS; Vieira Ferreira LF; Botelho do Rego AM; Rei Vilar M; Boufi S
    Carbohydr Polym; 2016 May; 141():229-37. PubMed ID: 26877017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surfactant-assisted hollowing of Cu nanoparticles involving halide-induced corrosion-oxidation processes.
    Huang CC; Hwu JR; Su WC; Shieh DB; Tzeng Y; Yeh CS
    Chemistry; 2006 May; 12(14):3805-10. PubMed ID: 16528773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell membrane damage and protein interaction induced by copper containing nanoparticles--importance of the metal release process.
    Karlsson HL; Cronholm P; Hedberg Y; Tornberg M; De Battice L; Svedhem S; Wallinder IO
    Toxicology; 2013 Nov; 313(1):59-69. PubMed ID: 23891735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transmission electron microscopy characterization of colloidal copper nanoparticles and their chemical reactivity.
    Cheng G; Hight Walker AR
    Anal Bioanal Chem; 2010 Feb; 396(3):1057-69. PubMed ID: 19841909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deciphering ligands' interaction with Cu and Cu2O nanocrystal surfaces by NMR solution tools.
    Glaria A; Cure J; Piettre K; Coppel Y; Turrin CO; Chaudret B; Fau P
    Chemistry; 2015 Jan; 21(3):1169-78. PubMed ID: 25394357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxide Nanocrystal Model Catalysts.
    Huang W
    Acc Chem Res; 2016 Mar; 49(3):520-7. PubMed ID: 26938790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface Kinetics of Copper Oxidation Investigated by In Situ Ultra-high Vacuum Transmission Electron Microscopy.
    Yang JC; Bharadwaj MD; Zhou G; Tropia L
    Microsc Microanal; 2001 Nov; 7(6):486-493. PubMed ID: 12597793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Helical TiO2 Nanotube Arrays Modified by Cu-Cu2O with Ultrahigh Sensitivity for the Nonenzymatic Electro-oxidation of Glucose.
    Yang Q; Long M; Tan L; Zhang Y; Ouyang J; Liu P; Tang A
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12719-30. PubMed ID: 25970570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.