These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 27936679)

  • 1. The Reaction Mechanism with Free Energy Barriers at Constant Potentials for the Oxygen Evolution Reaction at the IrO(2) (110) Surface.
    Ping Y; Nielsen RJ; Goddard WA
    J Am Chem Soc; 2017 Jan; 139(1):149-155. PubMed ID: 27936679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism and Tafel lines of electro-oxidation of water to oxygen on RuO2(110).
    Fang YH; Liu ZP
    J Am Chem Soc; 2010 Dec; 132(51):18214-22. PubMed ID: 21133410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advancing the Chemistry of CuWO4 for Photoelectrochemical Water Oxidation.
    Lhermitte CR; Bartlett BM
    Acc Chem Res; 2016 Jun; 49(6):1121-9. PubMed ID: 27227377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Surface Adsorption on the Oxygen Evolution Reaction on IrO
    Kuo DY; Kawasaki JK; Nelson JN; Kloppenburg J; Hautier G; Shen KM; Schlom DG; Suntivich J
    J Am Chem Soc; 2017 Mar; 139(9):3473-3479. PubMed ID: 28181433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions.
    Lee Y; Suntivich J; May KJ; Perry EE; Shao-Horn Y
    J Phys Chem Lett; 2012 Feb; 3(3):399-404. PubMed ID: 26285858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hollandite Structure K(x≈0.25)IrO2 Catalyst with Highly Efficient Oxygen Evolution Reaction.
    Sun W; Song Y; Gong XQ; Cao LM; Yang J
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):820-6. PubMed ID: 26694881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of oxygen evolution reaction on amorphous Au
    Wang Y; Gao P; Wang X; Huo J; Li L; Zhang Y; Volinsky AA; Qian P; Su Y
    Phys Chem Chem Phys; 2018 May; 20(21):14545-14556. PubMed ID: 29766158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction.
    Seitz LC; Dickens CF; Nishio K; Hikita Y; Montoya J; Doyle A; Kirk C; Vojvodic A; Hwang HY; Norskov JK; Jaramillo TF
    Science; 2016 Sep; 353(6303):1011-1014. PubMed ID: 27701108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rationalizing Acidic Oxygen Evolution Reaction over IrO
    Mou T; Bushiri DA; Esposito DV; Chen JG; Liu P
    Angew Chem Int Ed Engl; 2024 Nov; 63(48):e202409526. PubMed ID: 39032131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational Manipulation of IrO
    Sun W; Zhou Z; Zaman WQ; Cao LM; Yang J
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):41855-41862. PubMed ID: 29148711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multiscale modelling approach to elucidate the mechanism of the oxygen evolution reaction at the hematite-water interface.
    Sinha V; Sun D; Meijer EJ; Vlugt TJH; Bieberle-Hütter A
    Faraday Discuss; 2021 May; 229():89-107. PubMed ID: 33735341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of surface States in the oxygen evolution reaction on hematite.
    Iandolo B; Hellman A
    Angew Chem Int Ed Engl; 2014 Dec; 53(49):13404-8. PubMed ID: 25283270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and Characterization of 3-DOM IrO₂ Electrocatalysts Templated by PMMA for Oxygen Evolution Reaction.
    Liu F; Sun X; Chen X; Li C; Yu J; Tang H
    Polymers (Basel); 2019 Apr; 11(4):. PubMed ID: 30960613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism and activity of photocatalytic oxygen evolution on titania anatase in aqueous surroundings.
    Li YF; Liu ZP; Liu L; Gao W
    J Am Chem Soc; 2010 Sep; 132(37):13008-15. PubMed ID: 20738085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis.
    Su HY; Gorlin Y; Man IC; Calle-Vallejo F; Nørskov JK; Jaramillo TF; Rossmeisl J
    Phys Chem Chem Phys; 2012 Oct; 14(40):14010-22. PubMed ID: 22990481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SrNb(0.1)Co(0.7)Fe(0.2)O(3-δ) perovskite as a next-generation electrocatalyst for oxygen evolution in alkaline solution.
    Zhu Y; Zhou W; Chen ZG; Chen Y; Su C; Tadé MO; Shao Z
    Angew Chem Int Ed Engl; 2015 Mar; 54(13):3897-901. PubMed ID: 25653050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical chlorine evolution at rutile oxide (110) surfaces.
    Hansen HA; Man IC; Studt F; Abild-Pedersen F; Bligaard T; Rossmeisl J
    Phys Chem Chem Phys; 2010 Jan; 12(1):283-90. PubMed ID: 20024470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breaking Long-Range Order in Iridium Oxide by Alkali Ion for Efficient Water Oxidation.
    Gao J; Xu CQ; Hung SF; Liu W; Cai W; Zeng Z; Jia C; Chen HM; Xiao H; Li J; Huang Y; Liu B
    J Am Chem Soc; 2019 Feb; 141(7):3014-3023. PubMed ID: 30673269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic Study of IrO
    Zagalskaya A; Alexandrov V
    J Phys Chem Lett; 2020 Apr; 11(7):2695-2700. PubMed ID: 32188249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing the oxygen evolution reaction for electrochemical water oxidation by tuning solvent properties.
    Fortunelli A; Goddard WA; Sementa L; Barcaro G
    Nanoscale; 2015 Mar; 7(10):4514-21. PubMed ID: 25682836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.