These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
317 related articles for article (PubMed ID: 27936711)
21. Unraveling the importance of protein-protein interaction: application of a computational alanine-scanning mutagenesis to the study of the IgG1 streptococcal protein G (C2 fragment) complex. Moreira IS; Fernandes PA; Ramos MJ J Phys Chem B; 2006 Jun; 110(22):10962-9. PubMed ID: 16771349 [TBL] [Abstract][Full Text] [Related]
22. Rapid alchemical free energy calculation employing a generalized born implicit solvent model. Ostermeir K; Zacharias M J Phys Chem B; 2015 Jan; 119(3):968-75. PubMed ID: 25160060 [TBL] [Abstract][Full Text] [Related]
23. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Hou T; Wang J; Li Y; Wang W J Chem Inf Model; 2011 Jan; 51(1):69-82. PubMed ID: 21117705 [TBL] [Abstract][Full Text] [Related]
24. Prediction of Hot Spots at Myeloid Cell Leukemia-1-Inhibitor Interface Using Energy Estimation and Alanine Scanning Mutagenesis. Marimuthu P; Singaravelu K Biochemistry; 2018 Feb; 57(7):1249-1261. PubMed ID: 29345906 [TBL] [Abstract][Full Text] [Related]
25. Interaction Entropy for Computational Alanine Scanning. Yan Y; Yang M; Ji CG; Zhang JZH J Chem Inf Model; 2017 May; 57(5):1112-1122. PubMed ID: 28406301 [TBL] [Abstract][Full Text] [Related]
26. Relationship between hot spot residues and ligand binding hot spots in protein-protein interfaces. Zerbe BS; Hall DR; Vajda S; Whitty A; Kozakov D J Chem Inf Model; 2012 Aug; 52(8):2236-44. PubMed ID: 22770357 [TBL] [Abstract][Full Text] [Related]
27. Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model. Vorobjev YN; Almagro JC; Hermans J Proteins; 1998 Sep; 32(4):399-413. PubMed ID: 9726412 [TBL] [Abstract][Full Text] [Related]
28. A new set of atomic radii for accurate estimation of solvation free energy by Poisson-Boltzmann solvent model. Yamagishi J; Okimoto N; Morimoto G; Taiji M J Comput Chem; 2014 Nov; 35(29):2132-9. PubMed ID: 25220475 [TBL] [Abstract][Full Text] [Related]
29. Identification of computational hot spots in protein interfaces: combining solvent accessibility and inter-residue potentials improves the accuracy. Tuncbag N; Gursoy A; Keskin O Bioinformatics; 2009 Jun; 25(12):1513-20. PubMed ID: 19357097 [TBL] [Abstract][Full Text] [Related]
30. Probing the structural and energetic basis of kinesin-microtubule binding using computational alanine-scanning mutagenesis. Li M; Zheng W Biochemistry; 2011 Oct; 50(40):8645-55. PubMed ID: 21910419 [TBL] [Abstract][Full Text] [Related]
31. Molecular recognition in a diverse set of protein-ligand interactions studied with molecular dynamics simulations and end-point free energy calculations. Wang B; Li L; Hurley TD; Meroueh SO J Chem Inf Model; 2013 Oct; 53(10):2659-70. PubMed ID: 24032517 [TBL] [Abstract][Full Text] [Related]
32. Comparison of MM/GBSA calculations based on explicit and implicit solvent simulations. Godschalk F; Genheden S; Söderhjelm P; Ryde U Phys Chem Chem Phys; 2013 May; 15(20):7731-9. PubMed ID: 23595060 [TBL] [Abstract][Full Text] [Related]
33. Free energies of solvation in the context of protein folding: Implications for implicit and explicit solvent models. Cumberworth A; Bui JM; Gsponer J J Comput Chem; 2016 Mar; 37(7):629-40. PubMed ID: 26558440 [TBL] [Abstract][Full Text] [Related]
34. Accurate predictions of nonpolar solvation free energies require explicit consideration of binding-site hydration. Genheden S; Mikulskis P; Hu L; Kongsted J; Söderhjelm P; Ryde U J Am Chem Soc; 2011 Aug; 133(33):13081-92. PubMed ID: 21728337 [TBL] [Abstract][Full Text] [Related]
35. Detailed microscopic study of the full zipA:FtsZ interface. Moreira IS; Fernandes PA; Ramos MJ Proteins; 2006 Jun; 63(4):811-21. PubMed ID: 16538616 [TBL] [Abstract][Full Text] [Related]
36. Binding free energies and free energy components from molecular dynamics and Poisson-Boltzmann calculations. Application to amino acid recognition by aspartyl-tRNA synthetase. Archontis G; Simonson T; Karplus M J Mol Biol; 2001 Feb; 306(2):307-27. PubMed ID: 11237602 [TBL] [Abstract][Full Text] [Related]
37. An evaluation of Poisson-Boltzmann electrostatic free energy calculations through comparison with experimental mutagenesis data. Gorham RD; Kieslich CA; Nichols A; Sausman NU; Foronda M; Morikis D Biopolymers; 2011 Nov; 95(11):746-54. PubMed ID: 21538330 [TBL] [Abstract][Full Text] [Related]
38. Dissection of binding interactions in the complex between the anti-lysozyme antibody HyHEL-63 and its antigen. Li Y; Urrutia M; Smith-Gill SJ; Mariuzza RA Biochemistry; 2003 Jan; 42(1):11-22. PubMed ID: 12515535 [TBL] [Abstract][Full Text] [Related]
39. Prediction of the binding energy for small molecules, peptides and proteins. Schapira M; Totrov M; Abagyan R J Mol Recognit; 1999; 12(3):177-90. PubMed ID: 10398408 [TBL] [Abstract][Full Text] [Related]
40. Assessment of Different Parameters on the Accuracy of Computational Alanine Scanning of Protein-Protein Complexes with the Molecular Mechanics/Generalized Born Surface Area Method. Valdés-Tresanco ME; Valdés-Tresanco MS; Moreno E; Valiente PA J Phys Chem B; 2023 Feb; 127(4):944-954. PubMed ID: 36661180 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]