These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 27936711)

  • 41. Density functional theory calculations on entire proteins for free energies of binding: application to a model polar binding site.
    Fox SJ; Dziedzic J; Fox T; Tautermann CS; Skylaris CK
    Proteins; 2014 Dec; 82(12):3335-46. PubMed ID: 25212393
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Protein-Ligand Electrostatic Binding Free Energies from Explicit and Implicit Solvation.
    Izadi S; Aguilar B; Onufriev AV
    J Chem Theory Comput; 2015 Sep; 11(9):4450-9. PubMed ID: 26575935
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modeling loop reorganization free energies of acetylcholinesterase: a comparison of explicit and implicit solvent models.
    Olson MA
    Proteins; 2004 Dec; 57(4):645-50. PubMed ID: 15481087
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Influence of the solvent representation on vibrational entropy calculations: generalized born versus distance-dependent dielectric model.
    Kopitz H; Cashman DA; Pfeiffer-Marek S; Gohlke H
    J Comput Chem; 2012 Apr; 33(9):1004-13. PubMed ID: 22298332
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Integrating water exclusion theory into β contacts to predict binding free energy changes and binding hot spots.
    Liu Q; Hoi SC; Kwoh CK; Wong L; Li J
    BMC Bioinformatics; 2014 Feb; 15():57. PubMed ID: 24568581
    [TBL] [Abstract][Full Text] [Related]  

  • 46. AlaScan: A Graphical User Interface for Alanine Scanning Free-Energy Calculations.
    Ramadoss V; Dehez F; Chipot C
    J Chem Inf Model; 2016 Jun; 56(6):1122-6. PubMed ID: 27214306
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development and Evaluation of MM/GBSA Based on a Variable Dielectric GB Model for Predicting Protein-Ligand Binding Affinities.
    Wang E; Liu H; Wang J; Weng G; Sun H; Wang Z; Kang Y; Hou T
    J Chem Inf Model; 2020 Nov; 60(11):5353-5365. PubMed ID: 32175734
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hot spot occlusion from bulk water: a comprehensive study of the complex between the lysozyme HEL and the antibody FVD1.3.
    Moreira IS; Fernandes PA; Ramos MJ
    J Phys Chem B; 2007 Mar; 111(10):2697-706. PubMed ID: 17315919
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparison of end-point continuum-solvation methods for the calculation of protein-ligand binding free energies.
    Genheden S; Ryde U
    Proteins; 2012 May; 80(5):1326-42. PubMed ID: 22274991
    [TBL] [Abstract][Full Text] [Related]  

  • 50. APIS: accurate prediction of hot spots in protein interfaces by combining protrusion index with solvent accessibility.
    Xia JF; Zhao XM; Song J; Huang DS
    BMC Bioinformatics; 2010 Apr; 11():174. PubMed ID: 20377884
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Detection of farnesyltransferase interface hot spots through computational alanine scanning mutagenesis.
    Perez MA; Sousa SF; Oliveira EF; Fernandes PA; Ramos MJ
    J Phys Chem B; 2011 Dec; 115(51):15339-54. PubMed ID: 22060104
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Prediction of hot spot residues at protein-protein interfaces by combining machine learning and energy-based methods.
    Lise S; Archambeau C; Pontil M; Jones DT
    BMC Bioinformatics; 2009 Oct; 10():365. PubMed ID: 19878545
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Calculating protein-ligand binding affinities with MMPBSA: Method and error analysis.
    Wang C; Nguyen PH; Pham K; Huynh D; Le TB; Wang H; Ren P; Luo R
    J Comput Chem; 2016 Oct; 37(27):2436-46. PubMed ID: 27510546
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Empirical estimation of the energetic contribution of individual interface residues in structures of protein-protein complexes.
    Guharoy M; Chakrabarti P
    J Comput Aided Mol Des; 2009 Sep; 23(9):645-54. PubMed ID: 19479323
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
    Avbelj F
    J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Explicitly solvated ligand contribution to continuum solvation models for binding free energies: selectivity of theophylline binding to an RNA aptamer.
    Freedman H; Huynh LP; Le L; Cheatham TE; Tuszynski JA; Truong TN
    J Phys Chem B; 2010 Feb; 114(6):2227-37. PubMed ID: 20099932
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Absolute binding free energy calculations of CBClip host-guest systems in the SAMPL5 blind challenge.
    Lee J; Tofoleanu F; Pickard FC; König G; Huang J; Damjanović A; Baek M; Seok C; Brooks BR
    J Comput Aided Mol Des; 2017 Jan; 31(1):71-85. PubMed ID: 27677749
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Conformational structure, dynamics, and solvation energies of small alanine peptides in water and carbon tetrachloride.
    Xiang TX; Anderson BD
    J Pharm Sci; 2006 Jun; 95(6):1269-87. PubMed ID: 16625657
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Converging free energy estimates: MM-PB(GB)SA studies on the protein-protein complex Ras-Raf.
    Gohlke H; Case DA
    J Comput Chem; 2004 Jan; 25(2):238-50. PubMed ID: 14648622
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.