These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 27937071)
21. The complete mitochondrial genome of Sika deer Cervus nippon hortulorum (Artiodactyla: Cervidae) and phylogenetic studies. Liu YH; Liu XX; Zhang MH Mitochondrial DNA A DNA Mapp Seq Anal; 2016 Jul; 27(4):2967-8. PubMed ID: 26258510 [TBL] [Abstract][Full Text] [Related]
22. Landscape-level habitat management plan through geometric reserve design for critically endangered Hangul (Cervus hanglu hanglu). Mukherjee T; Sharma V; Sharma LK; Thakur M; Joshi BD; Sharief A; Thapa A; Dutta R; Dolker S; Tripathy B; Chandra K Sci Total Environ; 2021 Jul; 777():146031. PubMed ID: 33676208 [TBL] [Abstract][Full Text] [Related]
23. Analysis of the genetic diversity of Tahe red deer and population structure of Cervus elaphu/hanglu/canadensis. Yang S; Wang H; Dong Y; Zhao X; Dong S; Wang X; Xing X Gene; 2025 Jan; 933():148960. PubMed ID: 39326473 [TBL] [Abstract][Full Text] [Related]
24. Genetic consequences of human management in an introduced island population of red deer (Cervus elaphus). Nussey DH; Pemberton J; Donald A; Kruuk LE Heredity (Edinb); 2006 Jul; 97(1):56-65. PubMed ID: 16705323 [TBL] [Abstract][Full Text] [Related]
25. Genetic Structure and Effective Population Sizes in European Red Deer (Cervus elaphus) at a Continental Scale: Insights from Microsatellite DNA. Zachos FE; Frantz AC; Kuehn R; Bertouille S; Colyn M; Niedziałkowska M; Pérez-González J; Skog A; Sprĕm N; Flamand MC J Hered; 2016 Jul; 107(4):318-26. PubMed ID: 26912909 [TBL] [Abstract][Full Text] [Related]
26. Genetic diversity, genetic structure and diet of ancient and contemporary red deer (Cervus elaphus L.) from north-eastern France. Schnitzler A; Granado J; Putelat O; Arbogast RM; Drucker D; Eberhard A; Schmutz A; Klaefiger Y; Lang G; Salzburger W; Schibler J; Schlumbaum A; Bocherens H PLoS One; 2018; 13(1):e0189278. PubMed ID: 29304165 [TBL] [Abstract][Full Text] [Related]
27. Positioning the red deer (Cervus elaphus) hunted by the Tyrolean Iceman into a mitochondrial DNA phylogeny. Olivieri C; Marota I; Rizzi E; Ermini L; Fusco L; Pietrelli A; De Bellis G; Rollo F; Luciani S PLoS One; 2014; 9(7):e100136. PubMed ID: 24988290 [TBL] [Abstract][Full Text] [Related]
28. Admixture of Eastern and Western European Red Deer Lineages as a Result of Postglacial Recolonization of the Czech Republic (Central Europe). Krojerová-Prokešová J; Barančeková M; Koubek P J Hered; 2015; 106(4):375-85. PubMed ID: 25918430 [TBL] [Abstract][Full Text] [Related]
29. Phylogenetic study of complete cytochrome b genes in musk deer (genus Moschus) using museum samples. Su B; Wang YX; Lan H; Wang W; Zhang Y Mol Phylogenet Evol; 1999 Aug; 12(3):241-9. PubMed ID: 10413620 [TBL] [Abstract][Full Text] [Related]
30. Phylogeny of wapiti, red deer, sika deer, and other North American cervids as determined from mitochondrial DNA. Polziehn RO; Strobeck C Mol Phylogenet Evol; 1998 Oct; 10(2):249-58. PubMed ID: 9878235 [TBL] [Abstract][Full Text] [Related]
31. Probiotic Potential of Lactobacillus and Enterococcus Strains Isolated From the Faecal Microbiota of Critically Endangered Hangul Deer (Cervus hanglu hanglu): Implications for Conservation Management. Hameed J; Nazir R Probiotics Antimicrob Proteins; 2024 Jul; ():. PubMed ID: 39046670 [TBL] [Abstract][Full Text] [Related]
32. A mitochondrial control region and cytochrome b phylogeny of sika deer (Cervus nippon) and report of tandem repeats in the control region. Cook CE; Wang Y; Sensabaugh G Mol Phylogenet Evol; 1999 Jun; 12(1):47-56. PubMed ID: 10222160 [TBL] [Abstract][Full Text] [Related]
33. Late-glacial recolonization and phylogeography of European red deer (Cervus elaphus L.). Meiri M; Lister AM; Higham TF; Stewart JR; Straus LG; Obermaier H; González Morales MR; Marín-Arroyo AB; Barnes I Mol Ecol; 2013 Sep; 22(18):4711-22. PubMed ID: 23927498 [TBL] [Abstract][Full Text] [Related]
34. Chromosome-level genome assembly of Tarim red deer, Cervus elaphus yarkandensis. Ba H; Cai Z; Gao H; Qin T; Liu W; Xie L; Zhang Y; Jing B; Wang D; Li C Sci Data; 2020 Jun; 7(1):187. PubMed ID: 32561793 [TBL] [Abstract][Full Text] [Related]
35. Phylogeography of the Tyrrhenian red deer (Cervus elaphus corsicanus) resolved using ancient DNA of radiocarbon-dated subfossils. Doan K; Zachos FE; Wilkens B; Vigne JD; Piotrowska N; Stanković A; Jędrzejewska B; Stefaniak K; Niedziałkowska M Sci Rep; 2017 May; 7(1):2331. PubMed ID: 28539631 [TBL] [Abstract][Full Text] [Related]
37. Evolution and phylogeny of old world deer. Pitra C; Fickel J; Meijaard E; Groves PC Mol Phylogenet Evol; 2004 Dec; 33(3):880-95. PubMed ID: 15522810 [TBL] [Abstract][Full Text] [Related]
38. The surprising evolutionary history of South American deer. Duarte JM; González S; Maldonado JE Mol Phylogenet Evol; 2008 Oct; 49(1):17-22. PubMed ID: 18675919 [TBL] [Abstract][Full Text] [Related]
39. Mitochondrial genetic diversity, phylogeny and population structure of Hydropotes inermis in South Korea. Kim BJ; Lee YS; Park YS; Kim KS; Min MS; Lee SD; Lee H Genes Genet Syst; 2014; 89(5):227-35. PubMed ID: 25832749 [TBL] [Abstract][Full Text] [Related]
40. Two sympatric phylogroups of the Chinese water deer (Hydropotes inermis) identified by mitochondrial DNA control region and cytochrome b gene analyses. Koh HS; Lee BK; Wang J; Heo SW; Jang KH Biochem Genet; 2009 Dec; 47(11-12):860-7. PubMed ID: 19669873 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]