These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 2793735)
1. Effect of inert gas switching at depth on decompression outcome in rats. Lillo RS; MacCallum ME J Appl Physiol (1985); 1989 Oct; 67(4):1354-63. PubMed ID: 2793735 [TBL] [Abstract][Full Text] [Related]
2. Decompression outcome following saturation dives with multiple inert gases in rats. Lillo RS; Flynn ET; Homer LD J Appl Physiol (1985); 1985 Nov; 59(5):1503-14. PubMed ID: 2999061 [TBL] [Abstract][Full Text] [Related]
3. Intravascular bubble composition in guinea pigs: a possible explanation for differences in decompression risk among different gases. Lillo RS; Maccallum ME; Caldwell JM Undersea Biomed Res; 1992 Sep; 19(5):375-86. PubMed ID: 1355314 [TBL] [Abstract][Full Text] [Related]
4. Effect of N2-He-O2 on decompression outcome in rats after variable time-at-depth dives. Lillo RS J Appl Physiol (1985); 1988 May; 64(5):2042-52. PubMed ID: 3391902 [TBL] [Abstract][Full Text] [Related]
5. Decompression comparison of N2 and O2 in rats. Lillo RS; MacCallum ME Undersea Biomed Res; 1991 Jul; 18(4):317-31. PubMed ID: 1887519 [TBL] [Abstract][Full Text] [Related]
6. Pathophysiology of inner ear decompression sickness: potential role of the persistent foramen ovale. Mitchell SJ; Doolette DJ Diving Hyperb Med; 2015 Jun; 45(2):105-10. PubMed ID: 26165533 [TBL] [Abstract][Full Text] [Related]
7. Mixed-gas model for predicting decompression sickness in rats. Lillo RS; Parker EC J Appl Physiol (1985); 2000 Dec; 89(6):2107-16. PubMed ID: 11090556 [TBL] [Abstract][Full Text] [Related]
8. Role of oxygen in the production of human decompression sickness. Weathersby PK; Hart BL; Flynn ET; Walker WF J Appl Physiol (1985); 1987 Dec; 63(6):2380-7. PubMed ID: 3436872 [TBL] [Abstract][Full Text] [Related]
9. Decompression sickness in the rat following a dive on trimix: recompression therapy with oxygen vs. heliox and oxygen. Arieli R; Svidovsky P; Abramovich A J Appl Physiol (1985); 2007 Apr; 102(4):1324-8. PubMed ID: 17194730 [TBL] [Abstract][Full Text] [Related]
10. Probabilistic models of the role of oxygen in human decompression sickness. Parker EC; Survanshi SS; Massell PB; Weathersby PK J Appl Physiol (1985); 1998 Mar; 84(3):1096-102. PubMed ID: 9480974 [TBL] [Abstract][Full Text] [Related]
11. Partial pressure of nitrogen in breathing mixtures and risk of altitude decompression sickness. Pilmanis AA; Webb JT; Balldin UI Aviat Space Environ Med; 2005 Jul; 76(7):635-41. PubMed ID: 16018345 [TBL] [Abstract][Full Text] [Related]
13. Decompression sickness risk at 6553 m breathing two gas mixtures. Connolly DM; Lee VM; D'Oyly TJ Aviat Space Environ Med; 2010 Dec; 81(12):1069-77. PubMed ID: 21197850 [TBL] [Abstract][Full Text] [Related]
14. Recreational technical diving part 2: decompression from deep technical dives. Doolette DJ; Mitchell SJ Diving Hyperb Med; 2013 Jun; 43(2):96-104. PubMed ID: 23813463 [TBL] [Abstract][Full Text] [Related]
16. Effects of He-O2 breathing during experimental decompression sickness following air dives. Catron PW; Thomas LB; Flynn ET; McDermott JJ; Holt MA Undersea Biomed Res; 1987 Mar; 14(2):101-11. PubMed ID: 3576843 [TBL] [Abstract][Full Text] [Related]
17. A trial to determine the risk of decompression sickness after a 40 feet of sea water for 200 minute no-stop air dive. Ball R; Parker EC Aviat Space Environ Med; 2000 Feb; 71(2):102-8. PubMed ID: 10685581 [TBL] [Abstract][Full Text] [Related]