These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 2793766)

  • 1. A new technique to demonstrate flow limitation in partial expiratory flow-volume curves in infants.
    Ratjen F; Zinman R; Wohl ME
    J Appl Physiol (1985); 1989 Oct; 67(4):1662-9. PubMed ID: 2793766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pressure transmission across the respiratory system at raised lung volumes in infants.
    Turner DJ; Lanteri CJ; LeSouef PN; Sly PD
    J Appl Physiol (1985); 1994 Aug; 77(2):1015-20. PubMed ID: 8002486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of jacket tightness and pressure on raised lung volume forced expiratory maneuvers in infants.
    Lum S; Hoo AF; Stocks J
    Pediatr Pulmonol; 2002 Nov; 34(5):361-8. PubMed ID: 12357480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow limitation in normal infants: a new method for forced expiratory maneuvers from raised lung volumes.
    Feher A; Castile R; Kisling J; Angelicchio C; Filbrun D; Flucke R; Tepper R
    J Appl Physiol (1985); 1996 Jun; 80(6):2019-25. PubMed ID: 8806909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmission of pressure across the chest wall during the rapid thoracic compression technique in infants.
    Stick S; Turner D; LeSouëf P
    J Appl Physiol (1985); 1994 Apr; 76(4):1411-6. PubMed ID: 8045813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shape of forced expiratory flow-volume curves in infants.
    Le Souëf PN; Hughes DM; Landau LI
    Am Rev Respir Dis; 1988 Sep; 138(3):590-7. PubMed ID: 3202413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partial expiratory flow-volume curves in infancy: technical aspects.
    Silverman M; Prendiville A; Green S
    Bull Eur Physiopathol Respir; 1986; 22(3):257-62. PubMed ID: 3730643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maximal expiratory flows generated by rapid chest compression following end-inspiratory occlusion or expiratory clamping in young children.
    Kerem E; Reisman J; Gaston S; Levison H; Bryan AC
    Eur Respir J; 1995 Jan; 8(1):93-8. PubMed ID: 7744200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isovolume pressure/flow curves of rapid thoracoabdominal compressions in infants without respiratory disease.
    Ratjen F; Grasemann H; Wolstein R; Wiesemann HG
    Pediatr Pulmonol; 1998 Sep; 26(3):197-203. PubMed ID: 9773915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of jacket placement on respiratory compliance during raised lung volume measurements in infants.
    Hoo AF; Lum SY; Goetz I; Dezateux C; Stocks J
    Pediatr Pulmonol; 2001 Jan; 31(1):51-8. PubMed ID: 11180675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of compression pressure on forced expiratory flow in infants.
    Le Souëf PN; Hughes DM; Landau LI
    J Appl Physiol (1985); 1986 Nov; 61(5):1639-46. PubMed ID: 3640761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow limitation in infants assessed by negative expiratory pressure.
    Jones MH; Davis SD; Kisling JA; Howard JM; Castile R; Tepper RS
    Am J Respir Crit Care Med; 2000 Mar; 161(3 Pt 1):713-7. PubMed ID: 10712312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the "squeeze jacket" on lung function in young infants.
    Steinbrugger B; Lanigan A; Raven JM; Olinsky A
    Am Rev Respir Dis; 1988 Nov; 138(5):1258-60. PubMed ID: 2981026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effort and volume dependence of forced-deflation flow-volume relationships in intubated infants.
    Hammer J; Newth CJ
    J Appl Physiol (1985); 1996 Jan; 80(1):345-50. PubMed ID: 8847326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurements of exhaled nitric oxide with the single-breath technique and positive expiratory pressure in infants.
    Wildhaber JH; Hall GL; Stick SM
    Am J Respir Crit Care Med; 1999 Jan; 159(1):74-8. PubMed ID: 9872821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of thoracic gas compression on maximal and partial flow-volume maneuvers.
    Fairshter RD; Berry RB; Wilson AF; Brideshead T; Mukai D
    J Appl Physiol (1985); 1989 Aug; 67(2):780-5. PubMed ID: 2793680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow limitation in anesthetized rhesus monkeys: a comparison of rapid thoracoabdominal compression and forced deflation techniques.
    Hammer J; Sivan Y; Deakers TW; Newth CJ
    Pediatr Res; 1996 Mar; 39(3):539-46. PubMed ID: 8929878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors determining lobar emptying during maximal and partial forced deflations in nonhomogeneous airway obstruction in dogs.
    Georgopoulos D; Gomez A; Mink S
    Am J Respir Crit Care Med; 1994 May; 149(5):1241-7. PubMed ID: 8173765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled expiration in mechanically-ventilated patients with chronic obstructive pulmonary disease (COPD).
    Aerts JG; van den Berg B; Bogaard JM
    Eur Respir J; 1997 Mar; 10(3):550-6. PubMed ID: 9072983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manual compression of the abdomen to assess expiratory flow limitation during mechanical ventilation.
    Lemyze M; Favory R; Alves I; Perez T; Mathieu D
    J Crit Care; 2012 Feb; 27(1):37-44. PubMed ID: 21798707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.