BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 2793845)

  • 1. Silver binding to rabbit liver metallothionein. Circular dichroism and emission study of silver-thiolate cluster formation with apometallothionein and the alpha and beta fragments.
    Zelazowski AJ; Gasyna Z; Stillman MJ
    J Biol Chem; 1989 Oct; 264(29):17091-9. PubMed ID: 2793845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cadmium binding to metallothioneins. Domain specificity in reactions of alpha and beta fragments, apometallothionein, and zinc metallothionein with Cd2+.
    Stillman MJ; Cai W; Zelazowski AJ
    J Biol Chem; 1987 Apr; 262(10):4538-48. PubMed ID: 3558354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new insight into the Ag+ and Cu+ binding sites in the metallothionein beta domain.
    Bofill R; Palacios O; Capdevila M; Cols N; González-Duarte R; Atrian S; González-Duarte P
    J Inorg Biochem; 1999; 73(1-2):57-64. PubMed ID: 10212995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper binding to rabbit liver metallothionein. Formation of a continuum of copper(I)-thiolate stoichiometric species.
    Presta A; Green AR; Zelazowski A; Stillman MJ
    Eur J Biochem; 1995 Jan; 227(1-2):226-40. PubMed ID: 7851390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic studies of copper, silver and gold-metallothioneins.
    Stillman MJ; Presta A; Gui Z; Jiang DT
    Met Based Drugs; 1994; 1(5-6):375-94. PubMed ID: 18476257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Domain specificity in metal binding to metallothionein. A circular dichroism and magnetic circular dichroism study of cadmium and zinc binding at temperature extremes.
    Stillman MJ; Zelazowski AJ
    J Biol Chem; 1988 May; 263(13):6128-33. PubMed ID: 3360778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Luminescent Ag12-metallothionein: dependence of emission intensity on silver-thiolate cluster formation.
    Stillman MJ; Zelazowski AJ; Gasyna Z
    FEBS Lett; 1988 Nov; 240(1-2):159-62. PubMed ID: 3191989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circular dichroism, kinetic and mass spectrometric studies of copper(I) and mercury(II) binding to metallothionein.
    Stillman MJ; Thomas D; Trevithick C; Guo X; Siu M
    J Inorg Biochem; 2000 Apr; 79(1-4):11-9. PubMed ID: 10830841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stoichiometry and cluster specificity of copper binding to metallothionein: homogeneous metal clusters.
    Chen P; Munoz A; Nettesheim D; Shaw CF; Petering DH
    Biochem J; 1996 Jul; 317 ( Pt 2)(Pt 2):395-402. PubMed ID: 8713064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chiral copper(I)-thiolate clusters in metallothionein and glutathione.
    Presta A; Stillman MJ
    Chirality; 1994; 6(7):521-30. PubMed ID: 7986666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cadmium-thiolate clusters in metallothionein: spectrophotometric and spectropolarimetric features.
    Willner H; Vasák M; Kägi JH
    Biochemistry; 1987 Sep; 26(19):6287-92. PubMed ID: 3689776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is Ag(I) an adequate probe for Cu(I) in structural copper-metallothionein studies? The binding features of Ag(I) to mammalian metallothionein 1.
    Palacios O; Polec-Pawlak K; Lobinski R; Capdevila M; González-Duarte P
    J Biol Inorg Chem; 2003 Nov; 8(8):831-42. PubMed ID: 14505073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic and chemical approaches to the study of metal-thiolate clusters in metallothionein (MT).
    Vasák M; Overnell J; Good M
    Experientia Suppl; 1987; 52():179-89. PubMed ID: 2822462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic properties of the cobalt(II)-substituted alpha-fragment of rabbit liver metallothionein.
    Good M; Vasák M
    Biochemistry; 1986 Jun; 25(11):3328-34. PubMed ID: 3524678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing structural changes in the alpha and beta domains of copper- and silver-substituted metallothionein by emission spectroscopy and electrospray ionization mass spectrometry.
    Salgado MT; Bacher KL; Stillman MJ
    J Biol Inorg Chem; 2007 Mar; 12(3):294-312. PubMed ID: 17086417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Information on metal binding properties of metallothioneins from optical spectroscopy.
    Stillman MJ; Law AY; Cai WH; Zelazowski AJ
    Experientia Suppl; 1987; 52():203-11. PubMed ID: 2959506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic properties of the alpha fragment of metallothionein.
    Zelazowski AJ; Szymanska JA; Law AY; Stillman MJ
    J Biol Chem; 1984 Nov; 259(21):12960-3. PubMed ID: 6386806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absorption, circular dichroism, magnetic circular dichroism and emission study of rat kidney Cd,Cu-metallothionein.
    Stillman MJ; Szymanska JA
    Biophys Chem; 1984 Mar; 19(2):163-9. PubMed ID: 17005138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unravelling the mechanistic details of metal binding to mammalian metallothioneins from stoichiometric, kinetic, and binding affinity data.
    Scheller JS; Irvine GW; Stillman MJ
    Dalton Trans; 2018 Mar; 47(11):3613-3637. PubMed ID: 29431781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 111Cd NMR studies of the domain specificity of Ag+ and Cu+ binding to metallothionein.
    Li H; Otvos JD
    Biochemistry; 1996 Nov; 35(44):13929-36. PubMed ID: 8909290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.