These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 27938970)

  • 1. A christmas tree cataract.
    Rao RC; Choudhry N
    Can J Ophthalmol; 2016 Dec; 51(6):e160-e161. PubMed ID: 27938970
    [No Abstract]   [Full Text] [Related]  

  • 2. Human lens epithelial layer in cortical cataract.
    Kalariya N; Rawal UM; Vasavada AR
    Indian J Ophthalmol; 1998 Sep; 46(3):159-62. PubMed ID: 10085629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A human lens model of cortical cataract: Ca2+-induced protein loss, vimentin cleavage and opacification.
    Sanderson J; Marcantonio JM; Duncan G
    Invest Ophthalmol Vis Sci; 2000 Jul; 41(8):2255-61. PubMed ID: 10892870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitation of high molecular weight protein aggregates in opaque and transparent parts from the same human cataractous lens.
    Kodama T; Wolfe J; Chylack L; Smith J; Takemoto L
    Jpn J Ophthalmol; 1989; 33(1):114-9. PubMed ID: 2733253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Covalent change in alpha crystallin in opaque and transparent sections from the same human cataractous lens.
    Kodama T; Kodama T; Horwitz J; Takemoto L
    Jpn J Ophthalmol; 1990; 34(1):44-52. PubMed ID: 2362373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization of low molecular weight crystallin peptides in the aging human lens using a MALDI mass spectrometry imaging approach.
    Su SP; McArthur JD; Andrew Aquilina J
    Exp Eye Res; 2010 Jul; 91(1):97-103. PubMed ID: 20433829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug-induced lenticular opacity and accumulation of cholesterol-related substances in the lens cortex of dogs.
    Iwasaki H; Wakamatsu M; Sugihara K; Kamio K; Tsuji S; Morita J; Kurihara Y; Izumi T; Nishimoto T; Kinoshita K; Nakanishi Y; Sasaki M
    J Toxicol Sci; 2020; 45(4):201-218. PubMed ID: 32238695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between lens protein glycation and membrane structure in human cataract.
    Scalbert P; Birlouez-Aragon I
    Exp Eye Res; 1993 Mar; 56(3):335-40. PubMed ID: 8472788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in lens amino acid transport and protein metabolism during osmotic cataract produced by ouabain.
    Duncan G; Marcantonio JM
    Trans Ophthalmol Soc U K (1962); 1982; 102 Pt 3():314-7. PubMed ID: 6964272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aging-related cataract: clinical studies and biochemical correlations.
    Straatsma BR; Horwitz J; Flannery JG; Lightfoot DO; Ding LL
    Yan Ke Xue Bao; 1985 Dec; 1(2):111-6. PubMed ID: 3880141
    [No Abstract]   [Full Text] [Related]  

  • 11. Morphologic characteristics and chemical composition of Christmas tree cataract.
    Shun-Shin GA; Vrensen GF; Brown NP; Willekens B; Smeets MH; Bron AJ
    Invest Ophthalmol Vis Sci; 1993 Dec; 34(13):3489-96. PubMed ID: 8258504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Triangle sign" in Morgagnian cataract.
    Deshmukh S; Bhattacharjee H; Gupta K
    Indian J Ophthalmol; 2019 Jan; 67(1):137. PubMed ID: 30574920
    [No Abstract]   [Full Text] [Related]  

  • 13. Immunohistochemical analysis of lens cells on formation of different types of age-related cataract in humans.
    Korsakova NV; Sergeeva VE; Petrov SB
    Neurosci Behav Physiol; 2008 Nov; 38(9):887-90. PubMed ID: 18975114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macular hole formation following phacoemulsification cataract surgery.
    Papathanassiou M; Alonistiotis D; Petrou P; Theodossiadis P; Vergados I
    Clin Exp Optom; 2011 Jan; 94(1):112-4. PubMed ID: 21198840
    [No Abstract]   [Full Text] [Related]  

  • 15. Altered DNA Methylation and Expression Profiles of 8-Oxoguanine DNA Glycosylase 1 in Lens Tissue from Age-related Cataract Patients.
    Wang Y; Li F; Zhang G; Kang L; Qin B; Guan H
    Curr Eye Res; 2015; 40(8):815-21. PubMed ID: 25310012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progressive saturation relaxation spectroscopy. Investigations on lens nucleus and cortex at low temperature.
    Pócsik I; Tompa K; Rácz P
    Lens Eye Toxic Res; 1991; 8(2-3):163-76. PubMed ID: 1911634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Aging of the human lens and the mechanisms of the senile cataract formation--about structural lens crystallin].
    Yamamoto K; Fujiwara H; Nishikiori J; Ueno S; Nishikiori T; Shinji K; Yamamoto K; Tsuda K; Kurimoto R; Goto S; Kono M; Hanafusa M; Nakata K; Ohe S; Shin T
    Nippon Ganka Gakkai Zasshi; 1982; 86(11):1859-92. PubMed ID: 7168399
    [No Abstract]   [Full Text] [Related]  

  • 18. Autoantibodies against beta-crystallins induce lens epithelial cell damage and cataract formation in mice.
    Singh DP; Guru SC; Kikuchi T; Abe T; Shinohara T
    J Immunol; 1995 Jul; 155(2):993-9. PubMed ID: 7608574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in the human lens: implications for cortical cataract formation.
    Sachdev NH; Di Girolamo N; Nolan TM; McCluskey PJ; Wakefield D; Coroneo MT
    Invest Ophthalmol Vis Sci; 2004 Nov; 45(11):4075-82. PubMed ID: 15505058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of cytoskeletal proteins and lens cell opacification in the selenite cataract model.
    Matsushima H; David LL; Hiraoka T; Clark JI
    Exp Eye Res; 1997 Mar; 64(3):387-95. PubMed ID: 9196390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.