BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 27939197)

  • 41. Leaching of heavy metals (Cu, Ni and Zn) and organic matter after sewage sludge application to Mediterranean forest soils.
    Toribio M; Romanyà J
    Sci Total Environ; 2006 Jun; 363(1-3):11-21. PubMed ID: 16316678
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Impact of spreading olive mill waste water on agricultural soils for leaching of metal micronutrients and cations.
    Aharonov-Nadborny R; Tsechansky L; Raviv M; Graber ER
    Chemosphere; 2017 Jul; 179():213-221. PubMed ID: 28371705
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Adsorption of lambda-cyhalothrin and cypermethrin on two typical Chinese soils as affected by copper.
    Liu J; Lü X; Xie J; Chu Y; Sun C; Wang Q
    Environ Sci Pollut Res Int; 2009 Jun; 16(4):414-22. PubMed ID: 19067015
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Soluble metal pool as affected by soil addition with organic inputs.
    Hernandez-Soriano MC; Peña A; Mingorance MD
    Environ Toxicol Chem; 2013 Apr; 32(5):1027-32. PubMed ID: 23401281
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Trace elements in agroecosystems and impacts on the environment.
    He ZL; Yang XE; Stoffella PJ
    J Trace Elem Med Biol; 2005; 19(2-3):125-40. PubMed ID: 16325528
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A washing procedure to mobilize mixed contaminants from soil: II. Heavy metals.
    Ehsan S; Prasher SO; Marshall WD
    J Environ Qual; 2006; 35(6):2084-91. PubMed ID: 17071877
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Uptake mechanism of iron-phytosiderophore from the soil based on the structure of yellow stripe transporter.
    Yamagata A; Murata Y; Namba K; Terada T; Fukai S; Shirouzu M
    Nat Commun; 2022 Nov; 13(1):7180. PubMed ID: 36424382
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Combining a Standardized Batch Test with the Biotic Ligand Model to Predict Copper and Zinc Ecotoxicity in Soils.
    Tiberg C; Smolders E; Fröberg M; Gustafsson JP; Kleja DB
    Environ Toxicol Chem; 2022 Jun; 41(6):1540-1554. PubMed ID: 35262220
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Degradability of ethylenediaminedisuccinic acid (EDDS) in metal contaminated soils: implications for its use soil remediation.
    Meers E; Tack FM; Verloo MG
    Chemosphere; 2008 Jan; 70(3):358-63. PubMed ID: 17870142
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The influence of inorganic nitrogen fertilizer forms on micronutrient retranslocation and accumulation in grains of winter wheat.
    Barunawati N; Giehl RF; Bauer B; von Wirén N
    Front Plant Sci; 2013; 4():320. PubMed ID: 23967006
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Prediction of zinc, cadmium, lead, and copper availability to wheat in contaminated soils using chemical speciation, diffusive gradients in thin films, extraction, and isotopic dilution techniques.
    Nolan AL; Zhang H; McLaughlin MJ
    J Environ Qual; 2005; 34(2):496-507. PubMed ID: 15758102
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metal equilibration in laboratory-contaminated (spiked) sediments used for the development of whole-sediment toxicity tests.
    Simpson SL; Angel BM; Jolley DF
    Chemosphere; 2004 Feb; 54(5):597-609. PubMed ID: 14599505
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Partitioning and potential mobilization of aluminum, arsenic, iron, and heavy metals in tropical active and post-active acid sulfate soils: Influence of long-term paddy rice cultivation.
    Sukitprapanon T; Suddhiprakarn A; Kheoruenromne I; Gilkes RJ
    Chemosphere; 2018 Apr; 197():691-702. PubMed ID: 29407833
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mobilization of metals during treatment of contaminated soils by modified Fenton's reagent using different chelating agents.
    Bennedsen LR; Krischker A; Jørgensen TH; Søgaard EG
    J Hazard Mater; 2012 Jan; 199-200():128-34. PubMed ID: 22104769
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sugar beet factory lime affects the mobilization of Cd, Co, Cr, Cu, Mo, Ni, Pb, and Zn under dynamic redox conditions in a contaminated floodplain soil.
    Shaheen SM; Rinklebe J
    J Environ Manage; 2017 Jan; 186(Pt 2):253-260. PubMed ID: 27499501
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phytosiderophores influence on cadmium mobilization and uptake by wheat and barley plants.
    Shenker M; Fan TW; Crowley DE
    J Environ Qual; 2001; 30(6):2091-8. PubMed ID: 11790018
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Aging and temperature effects on DOC and elemental release from a metal contaminated soil.
    Martínez CE; Jacobson AR; McBride MB
    Environ Pollut; 2003; 122(1):135-43. PubMed ID: 12535602
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Influence of EDTA washing on the species and mobility of heavy metals residual in soils.
    Zhang W; Huang H; Tan F; Wang H; Qiu R
    J Hazard Mater; 2010 Jan; 173(1-3):369-76. PubMed ID: 19748734
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Impact of carboxymethyl cellulose coating on iron sulphide nanoparticles stability, transport, and mobilization potential of trace metals present in soils and sediment.
    Van Koetsem F; Van Havere L; Du Laing G
    J Environ Manage; 2016 Mar; 168():210-8. PubMed ID: 26708651
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction?
    Grybos M; Davranche M; Gruau G; Petitjean P
    J Colloid Interface Sci; 2007 Oct; 314(2):490-501. PubMed ID: 17692327
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.