These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
515 related articles for article (PubMed ID: 27939300)
1. Characterization of FcγRIIIA effector cells used in in vitro ADCC bioassay: Comparison of primary NK cells with engineered NK-92 and Jurkat T cells. Hsieh YT; Aggarwal P; Cirelli D; Gu L; Surowy T; Mozier NM J Immunol Methods; 2017 Feb; 441():56-66. PubMed ID: 27939300 [TBL] [Abstract][Full Text] [Related]
2. Development of a robust reporter-based ADCC assay with frozen, thaw-and-use cells to measure Fc effector function of therapeutic antibodies. Cheng ZJ; Garvin D; Paguio A; Moravec R; Engel L; Fan F; Surowy T J Immunol Methods; 2014 Dec; 414():69-81. PubMed ID: 25086226 [TBL] [Abstract][Full Text] [Related]
3. A potential therapy for chordoma via antibody-dependent cell-mediated cytotoxicity employing NK or high-affinity NK cells in combination with cetuximab. Fujii R; Schlom J; Hodge JW J Neurosurg; 2018 May; 128(5):1419-1427. PubMed ID: 28753113 [TBL] [Abstract][Full Text] [Related]
4. Characterization of in vitro antibody-dependent cell-mediated cytotoxicity activity of therapeutic antibodies - impact of effector cells. Chung S; Lin YL; Reed C; Ng C; Cheng ZJ; Malavasi F; Yang J; Quarmby V; Song A J Immunol Methods; 2014 May; 407():63-75. PubMed ID: 24704820 [TBL] [Abstract][Full Text] [Related]
5. The influence of NK cell-mediated ADCC: Structure and expression of the CD16 molecule differ among FcγRIIIa-V158F genotypes in healthy Japanese subjects. Oboshi W; Watanabe T; Matsuyama Y; Kobara A; Yukimasa N; Ueno I; Aki K; Tada T; Hosoi E Hum Immunol; 2016 Feb; 77(2):165-71. PubMed ID: 26582002 [TBL] [Abstract][Full Text] [Related]
7. FcgammaRIIIa polymorphisms and cetuximab induced cytotoxicity in squamous cell carcinoma of the head and neck. Taylor RJ; Chan SL; Wood A; Voskens CJ; Wolf JS; Lin W; Chapoval A; Schulze DH; Tian G; Strome SE Cancer Immunol Immunother; 2009 Jul; 58(7):997-1006. PubMed ID: 18979096 [TBL] [Abstract][Full Text] [Related]
8. [Influence of FcγRIIIa polymorphism on rituximab-dependent NK cell-mediated cytotoxicity to Raji cells]. Qu YH; Li Y; Wu YF; Fang JP; Huang SL; Huang Y; Wei J Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2010 Oct; 18(5):1269-74. PubMed ID: 21129274 [TBL] [Abstract][Full Text] [Related]
9. Determining ADCC Activity of Antibody-Based Therapeutic Molecules using Two Bioluminescent Reporter-Based Bioassays. Garvin D; Stecha P; Gilden J; Wang J; Grailer J; Hartnett J; Fan F; Cong M; Cheng ZJ Curr Protoc; 2021 Nov; 1(11):e296. PubMed ID: 34787960 [TBL] [Abstract][Full Text] [Related]
10. [Characterization of Therapeutic Monoclonal Antibodies by Using FcγR-expressing Reporter Cell Lines]. Tada M; Ishii-Watabe A Yakugaku Zasshi; 2017; 137(7):837-843. PubMed ID: 28674297 [TBL] [Abstract][Full Text] [Related]
11. Chronic HIV-1 Infection Alters the Cellular Distribution of FcγRIIIa and the Functional Consequence of the FcγRIIIa-F158V Variant. Phaahla NG; Lassaunière R; Da Costa Dias B; Waja Z; Martinson NA; Tiemessen CT Front Immunol; 2019; 10():735. PubMed ID: 31024562 [TBL] [Abstract][Full Text] [Related]
12. Enhancement of the antibody-dependent cellular cytotoxicity of low-fucose IgG1 Is independent of FcgammaRIIIa functional polymorphism. Niwa R; Hatanaka S; Shoji-Hosaka E; Sakurada M; Kobayashi Y; Uehara A; Yokoi H; Nakamura K; Shitara K Clin Cancer Res; 2004 Sep; 10(18 Pt 1):6248-55. PubMed ID: 15448014 [TBL] [Abstract][Full Text] [Related]
13. Engineered aglycosylated full-length IgG Fc variants exhibiting improved FcγRIIIa binding and tumor cell clearance. Jo M; Kwon HS; Lee KH; Lee JC; Jung ST MAbs; 2018; 10(2):278-289. PubMed ID: 29173039 [TBL] [Abstract][Full Text] [Related]
14. An NK cell line (haNK) expressing high levels of granzyme and engineered to express the high affinity CD16 allele. Jochems C; Hodge JW; Fantini M; Fujii R; Morillon YM; Greiner JW; Padget MR; Tritsch SR; Tsang KY; Campbell KS; Klingemann H; Boissel L; Rabizadeh S; Soon-Shiong P; Schlom J Oncotarget; 2016 Dec; 7(52):86359-86373. PubMed ID: 27861156 [TBL] [Abstract][Full Text] [Related]
15. Antibody-dependent cellular cytotoxicity and cytokine/chemokine secretion by KHYG-1 cells stably expressing FcγRIIIA. Kobayashi E; Motoi S; Sugiura M; Kajikawa M; Kojima S; Kohroki J; Masuho Y Immunol Lett; 2014 Sep; 161(1):59-64. PubMed ID: 24841426 [TBL] [Abstract][Full Text] [Related]
16. Analysis of in vitro ADCC and clinical response to trastuzumab: possible relevance of FcγRIIIA/FcγRIIA gene polymorphisms and HER-2 expression levels on breast cancer cell lines. Boero S; Morabito A; Banelli B; Cardinali B; Dozin B; Lunardi G; Piccioli P; Lastraioli S; Carosio R; Salvi S; Levaggi A; Poggio F; D'Alonzo A; Romani M; Del Mastro L; Poggi A; Pistillo MP J Transl Med; 2015 Oct; 13():324. PubMed ID: 26450443 [TBL] [Abstract][Full Text] [Related]
17. Afucosylated antibodies increase activation of FcγRIIIa-dependent signaling components to intensify processes promoting ADCC. Liu SD; Chalouni C; Young JC; Junttila TT; Sliwkowski MX; Lowe JB Cancer Immunol Res; 2015 Feb; 3(2):173-83. PubMed ID: 25387893 [TBL] [Abstract][Full Text] [Related]
19. Development of an ELISA based bridging assay as a surrogate measure of ADCC. Miller AS; Tejada ML; Gazzano-Santoro H J Immunol Methods; 2012 Nov; 385(1-2):45-50. PubMed ID: 22914441 [TBL] [Abstract][Full Text] [Related]
20. High-affinity FcγRIIIa genetic variants and potent NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC) responses contributing to severe COVID-19. Vietzen H; Danklmaier V; Zoufaly A; Puchhammer-Stöckl E Genet Med; 2022 Jul; 24(7):1449-1458. PubMed ID: 35488894 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]