These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 27939313)

  • 1. The Adult Body Plan of Indirect Developing Hemichordates Develops by Adding a Hox-Patterned Trunk to an Anterior Larval Territory.
    Gonzalez P; Uhlinger KR; Lowe CJ
    Curr Biol; 2017 Jan; 27(1):87-95. PubMed ID: 27939313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ventralization of an indirect developing hemichordate by NiCl₂ suggests a conserved mechanism of dorso-ventral (D/V) patterning in Ambulacraria (hemichordates and echinoderms).
    Röttinger E; Martindale MQ
    Dev Biol; 2011 Jun; 354(1):173-90. PubMed ID: 21466800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The development and metamorphosis of the indirect developing acorn worm
    Gonzalez P; Jiang JZ; Lowe CJ
    Front Zool; 2018; 15():26. PubMed ID: 29977319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparisons of cell proliferation and cell death from tornaria larva to juvenile worm in the hemichordate Schizocardium californicum.
    Bump P; Khariton M; Stubbert C; Moyen NE; Yan J; Wang B; Lowe CJ
    Evodevo; 2022 Jun; 13(1):13. PubMed ID: 35668535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deuterostome evolution: early development in the enteropneust hemichordate, Ptychodera flava.
    Henry JQ; Tagawa K; Martindale MQ
    Evol Dev; 2001; 3(6):375-90. PubMed ID: 11806633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hox genes pattern the anterior-posterior axis of the juvenile but not the larva in a maximally indirect developing invertebrate, Micrura alaskensis (Nemertea).
    Hiebert LS; Maslakova SA
    BMC Biol; 2015 Apr; 13():23. PubMed ID: 25888821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identical genomic organization of two hemichordate hox clusters.
    Freeman R; Ikuta T; Wu M; Koyanagi R; Kawashima T; Tagawa K; Humphreys T; Fang GC; Fujiyama A; Saiga H; Lowe C; Worley K; Jenkins J; Schmutz J; Kirschner M; Rokhsar D; Satoh N; Gerhart J
    Curr Biol; 2012 Nov; 22(21):2053-8. PubMed ID: 23063438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Building divergent body plans with similar genetic pathways.
    Swalla BJ
    Heredity (Edinb); 2006 Sep; 97(3):235-43. PubMed ID: 16868565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anteroposterior molecular registries in ectoderm of the echinus rudiment.
    Adachi S; Niimi I; Sakai Y; Sato F; Minokawa T; Urata M; Sehara-Fujisawa A; Kobayashi I; Yamaguchi M
    Dev Dyn; 2018 Dec; 247(12):1297-1307. PubMed ID: 30394653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Group B sox genes that contribute to specification of the vertebrate brain are expressed in the apical organ and ciliary bands of hemichordate larvae.
    Taguchi S; Tagawa K; Humphreys T; Satoh N
    Zoolog Sci; 2002 Jan; 19(1):57-66. PubMed ID: 12025405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anteroposterior patterning in hemichordates and the origins of the chordate nervous system.
    Lowe CJ; Wu M; Salic A; Evans L; Lander E; Stange-Thomann N; Gruber CE; Gerhart J; Kirschner M
    Cell; 2003 Jun; 113(7):853-65. PubMed ID: 12837244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anteroposterior axis patterning by early canonical Wnt signaling during hemichordate development.
    Darras S; Fritzenwanker JH; Uhlinger KR; Farrelly E; Pani AM; Hurley IA; Norris RP; Osovitz M; Terasaki M; Wu M; Aronowicz J; Kirschner M; Gerhart JC; Lowe CJ
    PLoS Biol; 2018 Jan; 16(1):e2003698. PubMed ID: 29337984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BMP controls dorsoventral and neural patterning in indirect-developing hemichordates providing insight into a possible origin of chordates.
    Su YH; Chen YC; Ting HC; Fan TP; Lin CY; Wang KT; Yu JK
    Proc Natl Acad Sci U S A; 2019 Jun; 116(26):12925-12932. PubMed ID: 31189599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hox gene expression in the hemichordate Saccoglossus kowalevskii and the evolution of deuterostome nervous systems.
    Aronowicz J; Lowe CJ
    Integr Comp Biol; 2006 Dec; 46(6):890-901. PubMed ID: 21672793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of the nervous system in the acorn worm Balanoglossus simodensis: insights into nervous system evolution.
    Miyamoto N; Nakajima Y; Wada H; Saito Y
    Evol Dev; 2010; 12(4):416-24. PubMed ID: 20618437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conserved expression pattern of BMP-2/4 in hemichordate acorn worm and echinoderm sea cucumber embryos.
    Harada Y; Shoguchi E; Taguchi S; Okai N; Humphreys T; Tagawa K; Satoh N
    Zoolog Sci; 2002 Oct; 19(10):1113-21. PubMed ID: 12426473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal development of the embryonic nervous system of Saccoglossus kowalevskii.
    Cunningham D; Casey ES
    Dev Biol; 2014 Feb; 386(1):252-63. PubMed ID: 24333176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular insights into deuterostome evolution from hemichordate developmental biology.
    Lowe CJ
    Curr Top Dev Biol; 2021; 141():75-117. PubMed ID: 33602496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular studies of hemichordate development: a key to understanding the evolution of bilateral animals and chordates.
    Tagawa K; Satoh N; Humphreys T
    Evol Dev; 2001; 3(6):443-54. PubMed ID: 11806640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Untangling posterior growth and segmentation by analyzing mechanisms of axis elongation in hemichordates.
    Fritzenwanker JH; Uhlinger KR; Gerhart J; Silva E; Lowe CJ
    Proc Natl Acad Sci U S A; 2019 Apr; 116(17):8403-8408. PubMed ID: 30967509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.