These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 27939351)
1. Prescribing joint co-ordinates during model preparation to improve inverse kinematic estimates of elbow joint angles. Wells DJ; Alderson JA; Dunne J; Elliott BC; Donnelly CJ J Biomech; 2017 Jan; 51():111-117. PubMed ID: 27939351 [TBL] [Abstract][Full Text] [Related]
2. Prescribing joint co-ordinates during model preparation in OpenSim improves lower limb unplanned sidestepping kinematics. Donnelly CJ; Jackson C; Weir G; Alderson J; Robinson MA J Sci Med Sport; 2021 Feb; 24(2):159-163. PubMed ID: 32798129 [TBL] [Abstract][Full Text] [Related]
3. The inter-tester repeatability of a model for analysing elbow flexion-extension during overhead sporting movements. Wells DJM; Donnelly CJ; Elliott BC; Middleton KJ; Alderson JA Med Biol Eng Comput; 2018 Oct; 56(10):1853-1860. PubMed ID: 29611098 [TBL] [Abstract][Full Text] [Related]
4. The influence of elbow joint kinematics on wrist speed in cricket fast bowling. Middleton KJ; Alderson JA; Elliott BC; Mills PM J Sports Sci; 2015; 33(15):1622-31. PubMed ID: 25643181 [TBL] [Abstract][Full Text] [Related]
5. Elbow joint kinematics during cricket bowling using magneto-inertial sensors: A feasibility study. Wells D; Alderson J; Camomilla V; Donnelly C; Elliott B; Cereatti A J Sports Sci; 2019 Mar; 37(5):515-524. PubMed ID: 30175947 [TBL] [Abstract][Full Text] [Related]
6. Joint kinematic calculation based on clinical direct kinematic versus inverse kinematic gait models. Kainz H; Modenese L; Lloyd DG; Maine S; Walsh HPJ; Carty CP J Biomech; 2016 Jun; 49(9):1658-1669. PubMed ID: 27139005 [TBL] [Abstract][Full Text] [Related]
7. Reliability of joint kinematic calculations based on direct kinematic and inverse kinematic models in obese children. Horsak B; Pobatschnig B; Schwab C; Baca A; Kranzl A; Kainz H Gait Posture; 2018 Oct; 66():201-207. PubMed ID: 30199779 [TBL] [Abstract][Full Text] [Related]
8. Impact of knee modeling approach on indicators and classification of anterior cruciate ligament injury risk. Robinson MA; Donnelly CJ; Tsao J; Vanrenterghem J Med Sci Sports Exerc; 2014 Jul; 46(7):1269-76. PubMed ID: 24300122 [TBL] [Abstract][Full Text] [Related]
9. Effects of hip joint centre mislocation on gait kinematics of children with cerebral palsy calculated using patient-specific direct and inverse kinematic models. Kainz H; Carty CP; Maine S; Walsh HPJ; Lloyd DG; Modenese L Gait Posture; 2017 Sep; 57():154-160. PubMed ID: 28641160 [TBL] [Abstract][Full Text] [Related]
10. Computer simulation on the cueing movements in cue sports: a validation study. Pan JW; Mei Q; Fernandez J; Song H; Komar J; Kong PW PeerJ; 2023; 11():e16180. PubMed ID: 37842036 [TBL] [Abstract][Full Text] [Related]
11. The effect of digitisation of the humeral epicondyles on quantifying elbow kinematics during cricket bowling. Eftaxiopoulou T; Gupte CM; Dear JP; Bull AM J Sports Sci; 2013; 31(15):1722-30. PubMed ID: 23879677 [TBL] [Abstract][Full Text] [Related]
12. A biomechanical comparison of conventional classifications of bowling action-types in junior fast bowlers. Schaefer A; Ferdinands RED; O'Dwyer N; Edwards S J Sports Sci; 2020 May; 38(10):1085-1095. PubMed ID: 32281483 [TBL] [Abstract][Full Text] [Related]
13. Upper extremity kinematic and kinetic adaptations during a fatiguing repetitive task. Qin J; Lin JH; Faber GS; Buchholz B; Xu X J Electromyogr Kinesiol; 2014 Jun; 24(3):404-11. PubMed ID: 24642235 [TBL] [Abstract][Full Text] [Related]
14. The effect of marker placement around the elbow on calculated elbow extension during bowling in cricket. Yeadon MR; King MA J Sports Sci; 2015; 33(16):1658-66. PubMed ID: 25682835 [TBL] [Abstract][Full Text] [Related]
15. A new kinematic model of the upper extremity based on functional joint parameter determination for shoulder and elbow. Rettig O; Fradet L; Kasten P; Raiss P; Wolf SI Gait Posture; 2009 Nov; 30(4):469-76. PubMed ID: 19651514 [TBL] [Abstract][Full Text] [Related]
16. The importance of a consistent workflow to estimate muscle-tendon lengths based on joint angles from the conventional gait model. Kainz H; Schwartz MH Gait Posture; 2021 Jul; 88():1-9. PubMed ID: 33933913 [TBL] [Abstract][Full Text] [Related]
17. Model-based approach for human kinematics reconstruction from markerless and marker-based motion analysis systems. Sholukha V; Bonnechere B; Salvia P; Moiseev F; Rooze M; Van Sint Jan S J Biomech; 2013 Sep; 46(14):2363-71. PubMed ID: 23972432 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of the global optimisation method within the upper limb kinematics analysis. Roux E; Bouilland S; Godillon-Maquinghen AP; Bouttens D J Biomech; 2002 Sep; 35(9):1279-83. PubMed ID: 12163317 [TBL] [Abstract][Full Text] [Related]
19. A practical clinical kinematic model for the upper limbs. Noble JJ; Fry NR; Bingham CR; East RH; Shortland AP Proc Inst Mech Eng H; 2018 Feb; 232(2):207-212. PubMed ID: 29283018 [TBL] [Abstract][Full Text] [Related]
20. Cluster-based upper body marker models for three-dimensional kinematic analysis: Comparison with an anatomical model and reliability analysis. Boser QA; Valevicius AM; Lavoie EB; Chapman CS; Pilarski PM; Hebert JS; Vette AH J Biomech; 2018 Apr; 72():228-234. PubMed ID: 29530500 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]