BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 27939351)

  • 1. Prescribing joint co-ordinates during model preparation to improve inverse kinematic estimates of elbow joint angles.
    Wells DJ; Alderson JA; Dunne J; Elliott BC; Donnelly CJ
    J Biomech; 2017 Jan; 51():111-117. PubMed ID: 27939351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prescribing joint co-ordinates during model preparation in OpenSim improves lower limb unplanned sidestepping kinematics.
    Donnelly CJ; Jackson C; Weir G; Alderson J; Robinson MA
    J Sci Med Sport; 2021 Feb; 24(2):159-163. PubMed ID: 32798129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The inter-tester repeatability of a model for analysing elbow flexion-extension during overhead sporting movements.
    Wells DJM; Donnelly CJ; Elliott BC; Middleton KJ; Alderson JA
    Med Biol Eng Comput; 2018 Oct; 56(10):1853-1860. PubMed ID: 29611098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of elbow joint kinematics on wrist speed in cricket fast bowling.
    Middleton KJ; Alderson JA; Elliott BC; Mills PM
    J Sports Sci; 2015; 33(15):1622-31. PubMed ID: 25643181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elbow joint kinematics during cricket bowling using magneto-inertial sensors: A feasibility study.
    Wells D; Alderson J; Camomilla V; Donnelly C; Elliott B; Cereatti A
    J Sports Sci; 2019 Mar; 37(5):515-524. PubMed ID: 30175947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joint kinematic calculation based on clinical direct kinematic versus inverse kinematic gait models.
    Kainz H; Modenese L; Lloyd DG; Maine S; Walsh HPJ; Carty CP
    J Biomech; 2016 Jun; 49(9):1658-1669. PubMed ID: 27139005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reliability of joint kinematic calculations based on direct kinematic and inverse kinematic models in obese children.
    Horsak B; Pobatschnig B; Schwab C; Baca A; Kranzl A; Kainz H
    Gait Posture; 2018 Oct; 66():201-207. PubMed ID: 30199779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of knee modeling approach on indicators and classification of anterior cruciate ligament injury risk.
    Robinson MA; Donnelly CJ; Tsao J; Vanrenterghem J
    Med Sci Sports Exerc; 2014 Jul; 46(7):1269-76. PubMed ID: 24300122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of hip joint centre mislocation on gait kinematics of children with cerebral palsy calculated using patient-specific direct and inverse kinematic models.
    Kainz H; Carty CP; Maine S; Walsh HPJ; Lloyd DG; Modenese L
    Gait Posture; 2017 Sep; 57():154-160. PubMed ID: 28641160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer simulation on the cueing movements in cue sports: a validation study.
    Pan JW; Mei Q; Fernandez J; Song H; Komar J; Kong PW
    PeerJ; 2023; 11():e16180. PubMed ID: 37842036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of digitisation of the humeral epicondyles on quantifying elbow kinematics during cricket bowling.
    Eftaxiopoulou T; Gupte CM; Dear JP; Bull AM
    J Sports Sci; 2013; 31(15):1722-30. PubMed ID: 23879677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A biomechanical comparison of conventional classifications of bowling action-types in junior fast bowlers.
    Schaefer A; Ferdinands RED; O'Dwyer N; Edwards S
    J Sports Sci; 2020 May; 38(10):1085-1095. PubMed ID: 32281483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upper extremity kinematic and kinetic adaptations during a fatiguing repetitive task.
    Qin J; Lin JH; Faber GS; Buchholz B; Xu X
    J Electromyogr Kinesiol; 2014 Jun; 24(3):404-11. PubMed ID: 24642235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of marker placement around the elbow on calculated elbow extension during bowling in cricket.
    Yeadon MR; King MA
    J Sports Sci; 2015; 33(16):1658-66. PubMed ID: 25682835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new kinematic model of the upper extremity based on functional joint parameter determination for shoulder and elbow.
    Rettig O; Fradet L; Kasten P; Raiss P; Wolf SI
    Gait Posture; 2009 Nov; 30(4):469-76. PubMed ID: 19651514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The importance of a consistent workflow to estimate muscle-tendon lengths based on joint angles from the conventional gait model.
    Kainz H; Schwartz MH
    Gait Posture; 2021 Jul; 88():1-9. PubMed ID: 33933913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model-based approach for human kinematics reconstruction from markerless and marker-based motion analysis systems.
    Sholukha V; Bonnechere B; Salvia P; Moiseev F; Rooze M; Van Sint Jan S
    J Biomech; 2013 Sep; 46(14):2363-71. PubMed ID: 23972432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the global optimisation method within the upper limb kinematics analysis.
    Roux E; Bouilland S; Godillon-Maquinghen AP; Bouttens D
    J Biomech; 2002 Sep; 35(9):1279-83. PubMed ID: 12163317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A practical clinical kinematic model for the upper limbs.
    Noble JJ; Fry NR; Bingham CR; East RH; Shortland AP
    Proc Inst Mech Eng H; 2018 Feb; 232(2):207-212. PubMed ID: 29283018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cluster-based upper body marker models for three-dimensional kinematic analysis: Comparison with an anatomical model and reliability analysis.
    Boser QA; Valevicius AM; Lavoie EB; Chapman CS; Pilarski PM; Hebert JS; Vette AH
    J Biomech; 2018 Apr; 72():228-234. PubMed ID: 29530500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.