These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 27939351)

  • 21. Fast bowling arm actions and the illegal delivery law in men's high performance cricket matches.
    Portus MR; Rosemond CD; Rath DA
    Sports Biomech; 2006 Jul; 5(2):215-30. PubMed ID: 16939154
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human upper-limb force capacities evaluation with robotic models for ergonomic applications: effect of elbow flexion.
    Hernandez V; Rezzoug N; Jacquier-Bret J; Gorce P
    Comput Methods Biomech Biomed Engin; 2016; 19(4):440-9. PubMed ID: 26214374
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An evaluation of biomechanical measures of bowling action legality in cricket.
    Ferdinands RE; Kersting UG
    Sports Biomech; 2007 Sep; 6(3):315-33. PubMed ID: 17933195
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantifying elbow extension and elbow hyperextension in cricket bowling: a case study of Jenny Gunn.
    King MA; Yeadon MR
    J Sports Sci; 2012 May; 30(9):937-47. PubMed ID: 22548307
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Contributions of joint rotations to ball release speed during cricket bowling: a three-dimensional kinematic analysis.
    Zhang Y; Unka J; Liu G
    J Sports Sci; 2011 Sep; 29(12):1293-300. PubMed ID: 21751857
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The relationship between shoulder alignment and elbow joint angle in cricket fast-medium bowlers.
    Roca M; Elliott B; Alderson J; Foster D
    J Sports Sci; 2006 Nov; 24(11):1127-35. PubMed ID: 17175611
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sex differences in upper limb 3D joint contributions during a lifting task.
    Martinez R; Bouffard J; Michaud B; Plamondon A; Côté JN; Begon M
    Ergonomics; 2019 May; 62(5):682-693. PubMed ID: 30696384
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Illegal bowling actions contribute to performance in cricket finger-spin bowlers.
    Spratford W; Elliott B; Portus M; Brown N; Alderson J
    Scand J Med Sci Sports; 2018 Jun; 28(6):1691-1699. PubMed ID: 29415324
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The relationship between segmental kinematics and ball spin in Type-2 cricket spin bowling.
    Beach AJ; Ferdinands RED; Sinclair PJ
    J Sports Sci; 2018 May; 36(10):1127-1134. PubMed ID: 28749751
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Real-time inverse kinematics for the upper limb: a model-based algorithm using segment orientations.
    Borbély BJ; Szolgay P
    Biomed Eng Online; 2017 Jan; 16(1):21. PubMed ID: 28095857
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reliability of four models for clinical gait analysis.
    Kainz H; Graham D; Edwards J; Walsh HPJ; Maine S; Boyd RN; Lloyd DG; Modenese L; Carty CP
    Gait Posture; 2017 May; 54():325-331. PubMed ID: 28411552
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An upper limb kinematic model for the examination of cricket bowling: a case study of Mutiah Muralitharan.
    Lloyd DG; Alderson J; Elliott BC
    J Sports Sci; 2000 Dec; 18(12):975-82. PubMed ID: 11138987
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pattern of improvement in upper limb pointing task kinematics after a 3-month training program with robotic assistance in stroke.
    Pila O; Duret C; Laborne FX; Gracies JM; Bayle N; Hutin E
    J Neuroeng Rehabil; 2017 Oct; 14(1):105. PubMed ID: 29029633
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of Position and Power Output on Upper Limb Kinetics in Cycling.
    Costes A; Turpin NA; Villeger D; Moretto P; Watier B
    J Appl Biomech; 2016 Apr; 32(2):140-9. PubMed ID: 26575861
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Upper extremity kinematic trends of fly-casting: establishing the effects of line length.
    Allen JR; O'Keefe KB; McCue TJ; Borger JJ; Hahn ME
    Sports Biomech; 2008 Jan; 7(1):38-53. PubMed ID: 18341135
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessing kinematic variability during performance of Jebsen-Taylor Hand Function Test.
    Kontson KL; Wang S; Barovsky S; Bloomer C; Wozniczka L; Civillico EF
    J Hand Ther; 2020; 33(1):34-44. PubMed ID: 30857890
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reliability of upper limb and trunk joint angles in healthy adults during activities of daily living.
    Engdahl SM; Gates DH
    Gait Posture; 2018 Feb; 60():41-47. PubMed ID: 29153478
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of movement of an elbow joint with a wearable robotic exoskeleton Using OpenSim software.
    Noei V; Lakany H
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4342-4345. PubMed ID: 36086238
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A study of the external forces and moments at the shoulder and elbow while performing every day tasks.
    Murray IA; Johnson GR
    Clin Biomech (Bristol); 2004 Jul; 19(6):586-94. PubMed ID: 15234482
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nine Degree-of-Freedom Kinematic Modeling of the Upper-Limb Complex for Constrained Workspace Evaluation.
    DeBoon B; Foley RCA; Nokleby S; La Delfa NJ; Rossa C
    J Biomech Eng; 2021 Feb; 143(2):. PubMed ID: 32975581
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.