BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 27939351)

  • 21. Fast bowling arm actions and the illegal delivery law in men's high performance cricket matches.
    Portus MR; Rosemond CD; Rath DA
    Sports Biomech; 2006 Jul; 5(2):215-30. PubMed ID: 16939154
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human upper-limb force capacities evaluation with robotic models for ergonomic applications: effect of elbow flexion.
    Hernandez V; Rezzoug N; Jacquier-Bret J; Gorce P
    Comput Methods Biomech Biomed Engin; 2016; 19(4):440-9. PubMed ID: 26214374
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An evaluation of biomechanical measures of bowling action legality in cricket.
    Ferdinands RE; Kersting UG
    Sports Biomech; 2007 Sep; 6(3):315-33. PubMed ID: 17933195
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantifying elbow extension and elbow hyperextension in cricket bowling: a case study of Jenny Gunn.
    King MA; Yeadon MR
    J Sports Sci; 2012 May; 30(9):937-47. PubMed ID: 22548307
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Contributions of joint rotations to ball release speed during cricket bowling: a three-dimensional kinematic analysis.
    Zhang Y; Unka J; Liu G
    J Sports Sci; 2011 Sep; 29(12):1293-300. PubMed ID: 21751857
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The relationship between shoulder alignment and elbow joint angle in cricket fast-medium bowlers.
    Roca M; Elliott B; Alderson J; Foster D
    J Sports Sci; 2006 Nov; 24(11):1127-35. PubMed ID: 17175611
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sex differences in upper limb 3D joint contributions during a lifting task.
    Martinez R; Bouffard J; Michaud B; Plamondon A; Côté JN; Begon M
    Ergonomics; 2019 May; 62(5):682-693. PubMed ID: 30696384
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Illegal bowling actions contribute to performance in cricket finger-spin bowlers.
    Spratford W; Elliott B; Portus M; Brown N; Alderson J
    Scand J Med Sci Sports; 2018 Jun; 28(6):1691-1699. PubMed ID: 29415324
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The relationship between segmental kinematics and ball spin in Type-2 cricket spin bowling.
    Beach AJ; Ferdinands RED; Sinclair PJ
    J Sports Sci; 2018 May; 36(10):1127-1134. PubMed ID: 28749751
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Real-time inverse kinematics for the upper limb: a model-based algorithm using segment orientations.
    Borbély BJ; Szolgay P
    Biomed Eng Online; 2017 Jan; 16(1):21. PubMed ID: 28095857
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reliability of four models for clinical gait analysis.
    Kainz H; Graham D; Edwards J; Walsh HPJ; Maine S; Boyd RN; Lloyd DG; Modenese L; Carty CP
    Gait Posture; 2017 May; 54():325-331. PubMed ID: 28411552
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nine Degree-of-Freedom Kinematic Modeling of the Upper-Limb Complex for Constrained Workspace Evaluation.
    DeBoon B; Foley RCA; Nokleby S; La Delfa NJ; Rossa C
    J Biomech Eng; 2021 Feb; 143(2):. PubMed ID: 32975581
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An upper limb kinematic model for the examination of cricket bowling: a case study of Mutiah Muralitharan.
    Lloyd DG; Alderson J; Elliott BC
    J Sports Sci; 2000 Dec; 18(12):975-82. PubMed ID: 11138987
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pattern of improvement in upper limb pointing task kinematics after a 3-month training program with robotic assistance in stroke.
    Pila O; Duret C; Laborne FX; Gracies JM; Bayle N; Hutin E
    J Neuroeng Rehabil; 2017 Oct; 14(1):105. PubMed ID: 29029633
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of Position and Power Output on Upper Limb Kinetics in Cycling.
    Costes A; Turpin NA; Villeger D; Moretto P; Watier B
    J Appl Biomech; 2016 Apr; 32(2):140-9. PubMed ID: 26575861
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Upper extremity kinematic trends of fly-casting: establishing the effects of line length.
    Allen JR; O'Keefe KB; McCue TJ; Borger JJ; Hahn ME
    Sports Biomech; 2008 Jan; 7(1):38-53. PubMed ID: 18341135
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessing kinematic variability during performance of Jebsen-Taylor Hand Function Test.
    Kontson KL; Wang S; Barovsky S; Bloomer C; Wozniczka L; Civillico EF
    J Hand Ther; 2020; 33(1):34-44. PubMed ID: 30857890
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reliability of upper limb and trunk joint angles in healthy adults during activities of daily living.
    Engdahl SM; Gates DH
    Gait Posture; 2018 Feb; 60():41-47. PubMed ID: 29153478
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of movement of an elbow joint with a wearable robotic exoskeleton Using OpenSim software.
    Noei V; Lakany H
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4342-4345. PubMed ID: 36086238
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A study of the external forces and moments at the shoulder and elbow while performing every day tasks.
    Murray IA; Johnson GR
    Clin Biomech (Bristol, Avon); 2004 Jul; 19(6):586-94. PubMed ID: 15234482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.