These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
451 related articles for article (PubMed ID: 27939552)
1. Intramammary infusion of Escherichia coli lipopolysaccharide negatively affects feed intake, chewing, and clinical variables, but some effects are stronger in cows experiencing subacute rumen acidosis. Aditya S; Humer E; Pourazad P; Khiaosa-Ard R; Huber J; Zebeli Q J Dairy Sci; 2017 Feb; 100(2):1363-1377. PubMed ID: 27939552 [TBL] [Abstract][Full Text] [Related]
2. Effect of an intramammary lipopolysaccharide challenge on the hindgut microbial composition and fermentation of dairy cattle experiencing intermittent subacute ruminal acidosis. Petri RM; Aditya S; Humer E; Zebeli Q J Dairy Sci; 2021 May; 104(5):5417-5431. PubMed ID: 33663865 [TBL] [Abstract][Full Text] [Related]
3. Relationship of severity of subacute ruminal acidosis to rumen fermentation, chewing activities, sorting behavior, and milk production in lactating dairy cows fed a high-grain diet. Gao X; Oba M J Dairy Sci; 2014 May; 97(5):3006-16. PubMed ID: 24612805 [TBL] [Abstract][Full Text] [Related]
4. Innate immunity and metabolomic responses in dairy cows challenged intramammarily with lipopolysaccharide after subacute ruminal acidosis. Humer E; Aditya S; Zebeli Q Animal; 2018 Dec; 12(12):2551-2560. PubMed ID: 30451145 [TBL] [Abstract][Full Text] [Related]
5. Peripartal changes in reticuloruminal pH and temperature in dairy cows differing in the susceptibility to subacute rumen acidosis. Humer E; Ghareeb K; Harder H; Mickdam E; Khol-Parisini A; Zebeli Q J Dairy Sci; 2015 Dec; 98(12):8788-99. PubMed ID: 26433416 [TBL] [Abstract][Full Text] [Related]
6. The use of a radiotelemetric ruminal bolus to detect body temperature changes in lactating dairy cattle. Alzahal O; Alzahal H; Steele MA; Van Schaik M; Kyriazakis I; Duffield TF; McBride BW J Dairy Sci; 2011 Jul; 94(7):3568-74. PubMed ID: 21700044 [TBL] [Abstract][Full Text] [Related]
7. Feeding of bakery by-products in the replacement of grains enhanced milk performance, modulated blood metabolic profile, and lowered the risk of rumen acidosis in dairy cows. Kaltenegger A; Humer E; Stauder A; Zebeli Q J Dairy Sci; 2020 Nov; 103(11):10122-10135. PubMed ID: 32896410 [TBL] [Abstract][Full Text] [Related]
8. Alfalfa pellet-induced subacute ruminal acidosis in dairy cows increases bacterial endotoxin in the rumen without causing inflammation. Khafipour E; Krause DO; Plaizier JC J Dairy Sci; 2009 Apr; 92(4):1712-24. PubMed ID: 19307653 [TBL] [Abstract][Full Text] [Related]
9. Active dry Saccharomyces cerevisiae can alleviate the effect of subacute ruminal acidosis in lactating dairy cows. AlZahal O; Dionissopoulos L; Laarman AH; Walker N; McBride BW J Dairy Sci; 2014 Dec; 97(12):7751-63. PubMed ID: 25282426 [TBL] [Abstract][Full Text] [Related]
10. Relationship between thiamine and subacute ruminal acidosis induced by a high-grain diet in dairy cows. Pan XH; Yang L; Xue FG; Xin HR; Jiang LS; Xiong BH; Beckers Y J Dairy Sci; 2016 Nov; 99(11):8790-8801. PubMed ID: 27568043 [TBL] [Abstract][Full Text] [Related]
12. Effect of acarbose on milk yield and composition in early-lactation dairy cattle fed a ration to induce subacute ruminal acidosis. McLaughlin CL; Thompson A; Greenwood K; Sherington J; Bruce C J Dairy Sci; 2009 Sep; 92(9):4481-8. PubMed ID: 19700709 [TBL] [Abstract][Full Text] [Related]
13. Transient feeding of a concentrate-rich diet increases the severity of subacute ruminal acidosis in dairy cattle. Pourazad P; Khiaosa-Ard R; Qumar M; Wetzels SU; Klevenhusen F; Metzler-Zebeli BU; Zebeli Q J Anim Sci; 2016 Feb; 94(2):726-38. PubMed ID: 27065143 [TBL] [Abstract][Full Text] [Related]
14. Distinct responses in feed sorting, chewing behavior, and ruminal acidosis risk between primiparous and multiparous Simmental cows fed diets differing in forage and starch levels. Stauder A; Humer E; Neubauer V; Reisinger N; Kaltenegger A; Zebeli Q J Dairy Sci; 2020 Sep; 103(9):8467-8481. PubMed ID: 32622591 [TBL] [Abstract][Full Text] [Related]
15. Increased feeding frequency increased milk fat yield and may reduce the severity of subacute ruminal acidosis in higher-risk cows. Macmillan K; Gao X; Oba M J Dairy Sci; 2017 Feb; 100(2):1045-1054. PubMed ID: 27939535 [TBL] [Abstract][Full Text] [Related]
16. Grain-based versus alfalfa-based subacute ruminal acidosis induction experiments: Similarities and differences between changes in milk fatty acids. Colman E; Khafipour E; Vlaeminck B; De Baets B; Plaizier JC; Fievez V J Dairy Sci; 2013 Jul; 96(7):4100-11. PubMed ID: 23628250 [TBL] [Abstract][Full Text] [Related]
17. Short communication: Risk of subacute ruminal acidosis affects the feed sorting behavior and milk production of early lactation cows. Coon RE; Duffield TF; DeVries TJ J Dairy Sci; 2019 Jan; 102(1):652-659. PubMed ID: 30447980 [TBL] [Abstract][Full Text] [Related]
18. Effects of corn silage particle size, supplemental hay, and forage-to-concentrate ratio on rumen pH, feed preference, and milk fat profile of dairy cattle. Kmicikewycz AD; Harvatine KJ; Heinrichs AJ J Dairy Sci; 2015 Jul; 98(7):4850-68. PubMed ID: 25958273 [TBL] [Abstract][Full Text] [Related]
19. Effects of various starch feeding regimens on responses of dairy cows to intramammary lipopolysaccharide infusion. Gott PN; Hogan JS; Weiss WP J Dairy Sci; 2015 Mar; 98(3):1786-96. PubMed ID: 25547311 [TBL] [Abstract][Full Text] [Related]
20. Elucidating the factors and consequences of the severity of rumen acidosis in first-lactation Holstein cows during transition and early lactation. Hartinger T; Castillo-Lopez E; Reisinger N; Zebeli Q J Anim Sci; 2024 Jan; 102():. PubMed ID: 38364366 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]