These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 27939660)

  • 1. Cometabolic biodegradation of 1,2,3-trichloropropane by propane-oxidizing bacteria.
    Wang B; Chu KH
    Chemosphere; 2017 Feb; 168():1494-1497. PubMed ID: 27939660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of 1,4-dioxane: effects of enzyme inducers and trichloroethylene.
    Hand S; Wang B; Chu KH
    Sci Total Environ; 2015 Jul; 520():154-9. PubMed ID: 25813968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformation and biodegradation of 1,2,3-trichloropropane (TCP).
    Samin G; Janssen DB
    Environ Sci Pollut Res Int; 2012 Sep; 19(8):3067-78. PubMed ID: 22875418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of growth substrate on triclosan biodegradation potential of oxygenase-expressing bacteria.
    Lee DG; Chu KH
    Chemosphere; 2013 Nov; 93(9):1904-11. PubMed ID: 23890965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An inducible propane monooxygenase is responsible for N-nitrosodimethylamine degradation by Rhodococcus sp. strain RHA1.
    Sharp JO; Sales CM; LeBlanc JC; Liu J; Wood TK; Eltis LD; Mohn WW; Alvarez-Cohen L
    Appl Environ Microbiol; 2007 Nov; 73(21):6930-8. PubMed ID: 17873074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Proteomic Analysis of Propane Metabolism in Mycobacterium sp. Strain ENV421 and Rhodococcus sp. Strain ENV425.
    Tupa PR; Masuda H
    J Mol Microbiol Biotechnol; 2018; 28(3):107-115. PubMed ID: 30153684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Survey of microbial oxygenases: trichloroethylene degradation by propane-oxidizing bacteria.
    Wackett LP; Brusseau GA; Householder SR; Hanson RS
    Appl Environ Microbiol; 1989 Nov; 55(11):2960-4. PubMed ID: 2624467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional characterization of propane-enhanced N-nitrosodimethylamine degradation by two actinomycetales.
    Sharp JO; Sales CM; Alvarez-Cohen L
    Biotechnol Bioeng; 2010 Dec; 107(6):924-32. PubMed ID: 20717971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation of 1,2,3-trichloropropane through directed evolution and heterologous expression of a haloalkane dehalogenase gene.
    Bosma T; Damborský J; Stucki G; Janssen DB
    Appl Environ Microbiol; 2002 Jul; 68(7):3582-7. PubMed ID: 12089046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Advances in degradation mechanisms of 1,2,3-trichloropropane and remediation technology of contaminated sites].
    Zhang Y; Jin H; Li X; Song Y; Yan J; Yang Y
    Sheng Wu Gong Cheng Xue Bao; 2021 Oct; 37(10):3578-3590. PubMed ID: 34708612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immobilized synthetic pathway for biodegradation of toxic recalcitrant pollutant 1,2,3-trichloropropane.
    Dvorak P; Bidmanova S; Damborsky J; Prokop Z
    Environ Sci Technol; 2014 Jun; 48(12):6859-66. PubMed ID: 24787668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of 1,4-dioxane biodegradation by monooxygenase-expressing bacteria.
    Mahendra S; Alvarez-Cohen L
    Environ Sci Technol; 2006 Sep; 40(17):5435-42. PubMed ID: 16999122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing aerobic biodegradation of 1,2-dibromoethane in groundwater using ethane or propane and inorganic nutrients.
    Hatzinger PB; Streger SH; Begley JF
    J Contam Hydrol; 2015 Jan; 172():61-70. PubMed ID: 25437228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological treatment of N-nitrosodimethylamine (NDMA) and N-nitrodimethylamine (NTDMA) in a field-scale fluidized bed bioreactor.
    Hatzinger PB; Lewis C; Webster TS
    Water Res; 2017 Dec; 126():361-371. PubMed ID: 28972939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trichloroethylene degradation by butane-oxidizing bacteria causes a spectrum of toxic effects.
    Halsey KH; Sayavedra-Soto LA; Bottomley PJ; Arp DJ
    Appl Microbiol Biotechnol; 2005 Oct; 68(6):794-801. PubMed ID: 15754184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ex situ treatment of N-nitrosodimethylamine (NDMA) in groundwater using a fluidized bed reactor.
    Webster TS; Condee C; Hatzinger PB
    Water Res; 2013 Feb; 47(2):811-20. PubMed ID: 23206498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trichloroethylene cometabolic degradation by Rhodococcus sp. L4 induced with plant essential oils.
    Suttinun O; Müller R; Luepromchai E
    Biodegradation; 2009 Apr; 20(2):281-91. PubMed ID: 18846429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential microbial transformation of nitrosamines by an inducible propane monooxygenase.
    Homme CL; Sharp JO
    Environ Sci Technol; 2013 Jul; 47(13):7388-95. PubMed ID: 23718280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cometabolic degradation of trichloroethylene by Burkholderia cepacia G4 with poplar leaf homogenate.
    Kang JW; Doty SL
    Can J Microbiol; 2014 Jul; 60(7):487-90. PubMed ID: 24992516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Situ Persulfate Oxidation of 1,2,3-Trichloropropane in Groundwater of North China Plain.
    Li H; Han Z; Qian Y; Kong X; Wang P
    Int J Environ Res Public Health; 2019 Aug; 16(15):. PubMed ID: 31374962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.