BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 27939749)

  • 21. Epigenetic and genetic alterations and their influence on gene regulation in chronic lymphocytic leukemia.
    Huang D; Ovcharenko I
    BMC Genomics; 2017 Mar; 18(1):236. PubMed ID: 28302063
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic study of complex diseases in the post-GWAS era.
    Huang Q
    J Genet Genomics; 2015 Mar; 42(3):87-98. PubMed ID: 25819085
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Finding Needles in the Haystack: Strategies for Uncovering Noncoding Regulatory Variants.
    Chen Y; Paramo MI; Zhang Y; Yao L; Shah SR; Jin Y; Zhang J; Pan X; Yu H
    Annu Rev Genet; 2023 Nov; 57():201-222. PubMed ID: 37562413
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comprehensive Computational Analysis of GWAS Loci Identifies CCR2 as a Candidate Gene for Celiac Disease Pathogenesis.
    Banaganapalli B; Rashidi O; Saadah OI; Wang J; Khan IA; Al-Aama JY; Shaik NA; Elango R
    J Cell Biochem; 2017 Aug; 118(8):2193-2207. PubMed ID: 28059456
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational analyses of type 2 diabetes-associated loci identified by genome-wide association studies.
    Cheng M; Liu X; Yang M; Han L; Xu A; Huang Q
    J Diabetes; 2017 Apr; 9(4):362-377. PubMed ID: 27121852
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detecting two-locus associations allowing for interactions in genome-wide association studies.
    Wan X; Yang C; Yang Q; Xue H; Tang NL; Yu W
    Bioinformatics; 2010 Oct; 26(20):2517-25. PubMed ID: 20736343
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The contribution of non-coding regulatory elements to cardiovascular disease.
    Villar D; Frost S; Deloukas P; Tinker A
    Open Biol; 2020 Jul; 10(7):200088. PubMed ID: 32603637
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Systematic identification of regulatory variants associated with cancer risk.
    Liu S; Liu Y; Zhang Q; Wu J; Liang J; Yu S; Wei GH; White KP; Wang X
    Genome Biol; 2017 Oct; 18(1):194. PubMed ID: 29061142
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of clinical text data for phenome-wide association studies (PheWASs).
    Hebbring SJ; Rastegar-Mojarad M; Ye Z; Mayer J; Jacobson C; Lin S
    Bioinformatics; 2015 Jun; 31(12):1981-7. PubMed ID: 25657332
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Molecular Revolution in Cutaneous Biology: The Era of Genome-Wide Association Studies and Statistical, Big Data, and Computational Topics.
    Anbunathan H; Bowcock AM
    J Invest Dermatol; 2017 May; 137(5):e113-e118. PubMed ID: 28411841
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CAUSEL: an epigenome- and genome-editing pipeline for establishing function of noncoding GWAS variants.
    Spisák S; Lawrenson K; Fu Y; Csabai I; Cottman RT; Seo JH; Haiman C; Han Y; Lenci R; Li Q; Tisza V; Szállási Z; Herbert ZT; Chabot M; Pomerantz M; Solymosi N; ; Gayther SA; Joung JK; Freedman ML
    Nat Med; 2015 Nov; 21(11):1357-63. PubMed ID: 26398868
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cis-regulatory variations: a study of SNPs around genes showing cis-linkage in segregating mouse populations.
    GuhaThakurta D; Xie T; Anand M; Edwards SW; Li G; Wang SS; Schadt EE
    BMC Genomics; 2006 Sep; 7():235. PubMed ID: 16978413
    [TBL] [Abstract][Full Text] [Related]  

  • 33. IW-Scoring: an Integrative Weighted Scoring framework for annotating and prioritizing genetic variations in the noncoding genome.
    Wang J; Dayem Ullah AZ; Chelala C
    Nucleic Acids Res; 2018 May; 46(8):e47. PubMed ID: 29390075
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lost in the space of bioinformatic tools: a constantly updated survival guide for genetic epidemiology. The GenEpi Toolbox.
    Coassin S; Brandstätter A; Kronenberg F
    Atherosclerosis; 2010 Apr; 209(2):321-35. PubMed ID: 19963217
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Disease-Associated Single-Nucleotide Polymorphisms From Noncoding Regions in Juvenile Idiopathic Arthritis Are Located Within or Adjacent to Functional Genomic Elements of Human Neutrophils and CD4+ T Cells.
    Jiang K; Zhu L; Buck MJ; Chen Y; Carrier B; Liu T; Jarvis JN
    Arthritis Rheumatol; 2015 Jul; 67(7):1966-77. PubMed ID: 25833190
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploring the function of genetic variants in the non-coding genomic regions: approaches for identifying human regulatory variants affecting gene expression.
    Li MJ; Yan B; Sham PC; Wang J
    Brief Bioinform; 2015 May; 16(3):393-412. PubMed ID: 24916300
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioinformatics tools for discovery and functional analysis of single nucleotide polymorphisms.
    Li L; Wei D
    Adv Exp Med Biol; 2015; 827():287-310. PubMed ID: 25387971
    [TBL] [Abstract][Full Text] [Related]  

  • 38. From genome-wide association studies to functional genomics: new insights into cardiovascular disease.
    McPherson R
    Can J Cardiol; 2013 Jan; 29(1):23-9. PubMed ID: 23200092
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Applications of computational tools to predict functional SNPs effects in human ErbB genes.
    Choura M; Rebaï A
    J Recept Signal Transduct Res; 2009; 29(5):286-91. PubMed ID: 19728770
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CERENKOV2: improved detection of functional noncoding SNPs using data-space geometric features.
    Yao Y; Liu Z; Wei Q; Ramsey SA
    BMC Bioinformatics; 2019 Feb; 20(1):63. PubMed ID: 30727967
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.