These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 27939786)

  • 21. Second and third harmonic waves excited by focused Gaussian beams.
    Levy U; Silberberg Y
    Opt Express; 2015 Oct; 23(21):27795-805. PubMed ID: 26480441
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new apparatus for analysis of viscoelastic fluids by ultrasound radiation force.
    Almeida TW; Kamimura HA; Carneiro AA
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():182-5. PubMed ID: 21097176
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Model equation for strongly focused finite-amplitude sound beams.
    Kamakura T; Ishiwata T; Matsuda K
    J Acoust Soc Am; 2000 Jun; 107(6):3035-46. PubMed ID: 10875349
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of stress field forming methods for vibro-acoustography.
    Chen S; Fatemi M; Kinnick R; Greenleaf JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Mar; 51(3):313-21. PubMed ID: 15128218
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of nonlinear ultrasound propagation on high intensity brain therapy.
    Pinton G; Aubry JF; Fink M; Tanter M
    Med Phys; 2011 Mar; 38(3):1207-16. PubMed ID: 21520833
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A simulation technique for 3D MR-guided acoustic radiation force imaging.
    Payne A; de Bever J; Farrer A; Coats B; Parker DL; Christensen DA
    Med Phys; 2015 Feb; 42(2):674-84. PubMed ID: 25652481
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of high intensity focused ultrasound transducers using acoustic streaming.
    Hariharan P; Myers MR; Robinson RA; Maruvada SH; Sliwa J; Banerjee RK
    J Acoust Soc Am; 2008 Mar; 123(3):1706-19. PubMed ID: 18345858
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acoustic power measurement of high intensity focused ultrasound in medicine based on radiation force.
    Shou W; Huang X; Duan S; Xia R; Shi Z; Geng X; Li F
    Ultrasonics; 2006 Dec; 44 Suppl 1():e17-20. PubMed ID: 16860359
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acoustic radiation force control: Pulsating spherical carriers.
    Rajabi M; Mojahed A
    Ultrasonics; 2018 Feb; 83():146-156. PubMed ID: 28622936
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thresholds for nonlinear effects in high- intensity focused ultrasound propagation and tissue heating.
    Soneson JE; Myers MR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Nov; 57(11):2450-9. PubMed ID: 21041132
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Frequency adaptation for enhanced radiation force amplitude in dynamic elastography.
    Ouared A; Montagnon E; Kazemirad S; Gaboury L; Robidoux A; Cloutier G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Aug; 62(8):1453-66. PubMed ID: 26276955
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analytical and numerical calculations of optimum design frequency for focused ultrasound therapy and acoustic radiation force.
    Ergün AS
    Ultrasonics; 2011 Oct; 51(7):786-94. PubMed ID: 21459399
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonlinear ultrasound propagation through layered liquid and tissue-equivalent media: computational and experimental results at high frequency.
    Williams R; Cherin E; Lam TY; Tavakkoli J; Zemp RJ; Foster FS
    Phys Med Biol; 2006 Nov; 51(22):5809-24. PubMed ID: 17068366
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reduced harmonic representation for continuous wave, shock-producing focused beams.
    Christopher T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):859-63. PubMed ID: 19406715
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A numerical study of transcranial focused ultrasound beam propagation at low frequency.
    Yin X; Hynynen K
    Phys Med Biol; 2005 Apr; 50(8):1821-36. PubMed ID: 15815098
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational study on the propagation of strongly focused nonlinear ultrasound in tissue with rib-like structures.
    Lin J; Liu X; Gong X; Ping Z; Wu J
    J Acoust Soc Am; 2013 Aug; 134(2):1702-14. PubMed ID: 23927211
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Amplitude-dependent losses in ultrasound exposure measurement.
    Duck FA; Perkins MA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(2):232-41. PubMed ID: 18290149
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction of a nondiffracting high-order Bessel (vortex) beam of fractional type alpha and integer order m with a rigid sphere: linear acoustic scattering and net instantaneous axial force.
    Mitri FG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):395-404. PubMed ID: 20178905
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bio-acoustic thermal lensing and nonlinear propagation in focused ultrasound surgery using large focal spots: a parametric study.
    Connor CW; Hynynen K
    Phys Med Biol; 2002 Jun; 47(11):1911-28. PubMed ID: 12108775
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of nonlinear distortion on acoustic radiation force elastography.
    Draudt AB; Cleveland RO
    Ultrasound Med Biol; 2011 Nov; 37(11):1874-83. PubMed ID: 21963033
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.