BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 27939870)

  • 1. Effect of pH on lactic acid production from acidogenic fermentation of food waste with different types of inocula.
    Tang J; Wang XC; Hu Y; Zhang Y; Li Y
    Bioresour Technol; 2017 Jan; 224():544-552. PubMed ID: 27939870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: effect of pH.
    Wang K; Yin J; Shen D; Li N
    Bioresour Technol; 2014 Jun; 161():395-401. PubMed ID: 24727700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of volatile fatty acid production by co-fermentation of food waste and excess sludge without pH control: The mechanism and microbial community analyses.
    Wu QL; Guo WQ; Zheng HS; Luo HC; Feng XC; Yin RL; Ren NQ
    Bioresour Technol; 2016 Sep; 216():653-60. PubMed ID: 27289056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lactic acid fermentation from food waste with indigenous microbiota: Effects of pH, temperature and high OLR.
    Tang J; Wang X; Hu Y; Zhang Y; Li Y
    Waste Manag; 2016 Jun; 52():278-85. PubMed ID: 27040090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acidogenic fermentation characteristics of different types of protein-rich substrates in food waste to produce volatile fatty acids.
    Shen D; Yin J; Yu X; Wang M; Long Y; Shentu J; Chen T
    Bioresour Technol; 2017 Mar; 227():125-132. PubMed ID: 28013128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term effect of pH on short-chain fatty acids accumulation and microbial community in sludge fermentation systems.
    Yuan Y; Wang S; Liu Y; Li B; Wang B; Peng Y
    Bioresour Technol; 2015 Dec; 197():56-63. PubMed ID: 26318922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-phase anaerobic digestion of lignocellulosic hydrolysate: Focusing on the acidification with different inoculum to substrate ratios and inoculum sources.
    Li Y; Xu H; Hua D; Zhao B; Mu H; Jin F; Meng G; Fang X
    Sci Total Environ; 2020 Jan; 699():134226. PubMed ID: 31683212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving volatile fatty acid yield from sludge anaerobic fermentation through self-forming dynamic membrane separation.
    Liu H; Wang Y; Yin B; Zhu Y; Fu B; Liu H
    Bioresour Technol; 2016 Oct; 218():92-100. PubMed ID: 27347803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of acidogenic fermentation for volatile fatty acid production from food waste: Effect of redox potential and inoculum.
    Yin J; Yu X; Zhang Y; Shen D; Wang M; Long Y; Chen T
    Bioresour Technol; 2016 Sep; 216():996-1003. PubMed ID: 27343452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shifting product spectrum by pH adjustment during long-term continuous anaerobic fermentation of food waste.
    Feng K; Li H; Zheng C
    Bioresour Technol; 2018 Dec; 270():180-188. PubMed ID: 30218934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The accumulation of volatile fatty acids and phenols through a pH-controlled fermentation of olive mill solid waste.
    Cabrera F; Serrano A; Torres Á; Rodriguez-Gutierrez G; Jeison D; Fermoso FG
    Sci Total Environ; 2019 Mar; 657():1501-1507. PubMed ID: 30677916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Volatile fatty acids production from saccharification residue from food waste ethanol fermentation: Effect of pH and microbial community.
    Jin Y; Lin Y; Wang P; Jin R; Gao M; Wang Q; Chang TC; Ma H
    Bioresour Technol; 2019 Nov; 292():121957. PubMed ID: 31430672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen.
    Dahiya S; Sarkar O; Swamy YV; Venkata Mohan S
    Bioresour Technol; 2015 Apr; 182():103-113. PubMed ID: 25682230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic membrane-assisted fermentation of food wastes for enhancing lactic acid production.
    Tang J; Wang XC; Hu Y; Ngo HH; Li Y
    Bioresour Technol; 2017 Jun; 234():40-47. PubMed ID: 28315603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inoculation and alkali coeffect in volatile fatty acids production and microbial community shift in the anaerobic fermentation of waste activated sludge.
    Huang L; Chen B; Pistolozzi M; Wu Z; Wang J
    Bioresour Technol; 2014 Feb; 153():87-94. PubMed ID: 24345567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH.
    Feng L; Chen Y; Zheng X
    Environ Sci Technol; 2009 Jun; 43(12):4373-80. PubMed ID: 19603649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioconversion of food waste to volatile fatty acids: Impact of microbial community, pH and retention time.
    Khatami K; Atasoy M; Ludtke M; Baresel C; Eyice Ö; Cetecioglu Z
    Chemosphere; 2021 Jul; 275():129981. PubMed ID: 33662716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mesophilic, thermophilic and hyperthermophilic acidogenic fermentation of food waste in batch: Effect of inoculum source.
    Arras W; Hussain A; Hausler R; Guiot SR
    Waste Manag; 2019 Mar; 87():279-287. PubMed ID: 31109527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acidogenic fermentation of iron-enhanced primary sedimentation sludge under different pH conditions for production of volatile fatty acids.
    Lin L; Li XY
    Chemosphere; 2018 Mar; 194():692-700. PubMed ID: 29245135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.