These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 27939921)

  • 1. Regulation of oxidative phosphorylation through each-step activation (ESA): Evidences from computer modeling.
    Korzeniewski B
    Prog Biophys Mol Biol; 2017 May; 125():1-23. PubMed ID: 27939921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of oxidative phosphorylation during work transitions results from its kinetic properties.
    Korzeniewski B
    J Appl Physiol (1985); 2014 Jan; 116(1):83-94. PubMed ID: 24157529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Each-step activation of oxidative phosphorylation is necessary to explain muscle metabolic kinetic responses to exercise and recovery in humans.
    Korzeniewski B; Rossiter HB
    J Physiol; 2015 Dec; 593(24):5255-68. PubMed ID: 26503399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart related to cytosolic inorganic phosphate (Pi) accumulation.
    Korzeniewski B
    J Appl Physiol (1985); 2016 Aug; 121(2):424-37. PubMed ID: 27283913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The modeling of oxidative phosphorylation in skeletal muscle.
    Korzeniewski B
    Jpn J Physiol; 2004 Dec; 54(6):511-6. PubMed ID: 15760482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of OXPHOS complex deficiencies and ESA dysfunction in working intact skeletal muscle: implications for mitochondrial myopathies.
    Korzeniewski B
    Biochim Biophys Acta; 2015 Oct; 1847(10):1310-9. PubMed ID: 26188374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 'Idealized' state 4 and state 3 in mitochondria vs. rest and work in skeletal muscle.
    Korzeniewski B
    PLoS One; 2015; 10(2):e0117145. PubMed ID: 25647747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of oxidative phosphorylation in different muscles and various experimental conditions.
    Korzeniewski B
    Biochem J; 2003 Nov; 375(Pt 3):799-804. PubMed ID: 12901719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic control over the oxygen consumption flux in intact skeletal muscle: in silico studies.
    Liguzinski P; Korzeniewski B
    Am J Physiol Cell Physiol; 2006 Dec; 291(6):C1213-24. PubMed ID: 16760266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of oxidative phosphorylation through parallel activation.
    Korzeniewski B
    Biophys Chem; 2007 Sep; 129(2-3):93-110. PubMed ID: 17566629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer-aided studies on the regulation of oxidative phosphorylation during work transitions.
    Korzeniewski B
    Prog Biophys Mol Biol; 2011 Nov; 107(2):274-85. PubMed ID: 21855564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of oxidative phosphorylation is different in electrically- and cortically-stimulated skeletal muscle.
    Korzeniewski B
    PLoS One; 2018; 13(4):e0195620. PubMed ID: 29698403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative phosphorylation: unique regulatory mechanism and role in metabolic homeostasis.
    Wilson DF
    J Appl Physiol (1985); 2017 Mar; 122(3):611-619. PubMed ID: 27789771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of ATP supply during muscle contraction: theoretical studies.
    Korzeniewski B
    Biochem J; 1998 Mar; 330 ( Pt 3)(Pt 3):1189-95. PubMed ID: 9494084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical studies on the regulation of oxidative phosphorylation in intact tissues.
    Korzeniewski B
    Biochim Biophys Acta; 2001 Mar; 1504(1):31-45. PubMed ID: 11239483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of oxidative phosphorylation in intact mammalian heart in vivo.
    Korzeniewski B; Noma A; Matsuoka S
    Biophys Chem; 2005 Jul; 116(2):145-57. PubMed ID: 15950827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical studies on the regulation of anaerobic glycolysis and its influence on oxidative phosphorylation in skeletal muscle.
    Korzeniewski B; Liguzinski P
    Biophys Chem; 2004 Jul; 110(1-2):147-69. PubMed ID: 15223151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms underlying extremely fast muscle V˙O
    Korzeniewski B; Rossiter HB; Zoladz JA
    Physiol Rep; 2018 Aug; 6(16):e13808. PubMed ID: 30156055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of proton leak to oxygen consumption in skeletal muscle during intense exercise is very low despite large contribution at rest.
    Korzeniewski B
    PLoS One; 2017; 12(10):e0185991. PubMed ID: 29045413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of the effect of oxidative phosphorylation deficiencies on the skeletal muscle bioenergetic system in patients with mitochondrial myopathies.
    Korzeniewski B
    J Appl Physiol (1985); 2021 Aug; 131(2):768-777. PubMed ID: 34197225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.