These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 27939928)

  • 1. How Vial Geometry Variability Influences Heat Transfer and Product Temperature During Freeze-Drying.
    Scutellà B; Passot S; Bourlés E; Fonseca F; Tréléa IC
    J Pharm Sci; 2017 Mar; 106(3):770-778. PubMed ID: 27939928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of mass and heat transfer parameters during freeze-drying cycles of pharmaceutical products.
    Hottot A; Vessot S; Andrieu J
    PDA J Pharm Sci Technol; 2005; 59(2):138-53. PubMed ID: 15971546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molded Vial Manufacturing and Its Impact on Heat Transfer during Freeze-Drying: Vial Geometry Considerations.
    Wenzel T; Gieseler H
    AAPS PharmSciTech; 2021 Jan; 22(2):57. PubMed ID: 33502633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of Natural Variations in Freeze-Drying Parameters on Product Temperature History: Application of Quasi Steady-State Heat and Mass Transfer and Simple Statistics.
    Pikal MJ; Pande P; Bogner R; Sane P; Mudhivarthi V; Sharma P
    AAPS PharmSciTech; 2018 Oct; 19(7):2828-2842. PubMed ID: 30259404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental Aspects of Measuring the Vial Heat Transfer Coefficient in Pharmaceutical Freeze-Drying.
    Wegiel LA; Ferris SJ; Nail SL
    AAPS PharmSciTech; 2018 May; 19(4):1810-1817. PubMed ID: 29616490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Freeze-drying: A relevant unit operation in the manufacture of foods, nutritional products, and pharmaceuticals.
    Assegehegn G; Brito-de la Fuente E; Franco JM; Gallegos C
    Adv Food Nutr Res; 2020; 93():1-58. PubMed ID: 32711860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mass and heat transfer in vial freeze-drying of pharmaceuticals: role of the vial.
    Pikal MJ; Roy ML; Shah S
    J Pharm Sci; 1984 Sep; 73(9):1224-37. PubMed ID: 6491939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Freeze-Drying Process Development and Scale-Up: Scale-Up of Edge Vial Versus Center Vial Heat Transfer Coefficients, K
    Pikal MJ; Bogner R; Mudhivarthi V; Sharma P; Sane P
    J Pharm Sci; 2016 Nov; 105(11):3333-3343. PubMed ID: 27666376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of vial heat transfer coefficients during the primary and secondary drying stages of freeze-drying.
    Yoon K; Narsimhan V
    Int J Pharm; 2023 Mar; 635():122746. PubMed ID: 36812952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of manometric temperature measurement (MTM), a process analytical technology tool in freeze drying, part III: heat and mass transfer measurement.
    Tang XC; Nail SL; Pikal MJ
    AAPS PharmSciTech; 2006; 7(4):97. PubMed ID: 17285746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fundamentals of freeze-drying.
    Nail SL; Jiang S; Chongprasert S; Knopp SA
    Pharm Biotechnol; 2002; 14():281-360. PubMed ID: 12189727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial Variation of Pressure in the Lyophilization Product Chamber Part 2: Experimental Measurements and Implications for Scale-up and Batch Uniformity.
    Sane P; Varma N; Ganguly A; Pikal M; Alexeenko A; Bogner RH
    AAPS PharmSciTech; 2017 Feb; 18(2):369-380. PubMed ID: 26989063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat Transfer During Freeze-Drying Using a High-throughput vial System in view of Process Scale-up to Serum vials.
    Buceta JP; Tréléa IC; Scutellà B; Bourlés E; Fonseca F; Passot S
    J Pharm Sci; 2021 Mar; 110(3):1323-1336. PubMed ID: 33275993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vial freeze-drying, part 1: new insights into heat transfer characteristics of tubing and molded vials.
    Hibler S; Wagner C; Gieseler H
    J Pharm Sci; 2012 Mar; 101(3):1189-201. PubMed ID: 22161688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Leachable Study of Glass Vials to Demonstrate the Impact of Low Fill Volume.
    Hladik B; Buscke F; Frost R; Rothhaar U
    PDA J Pharm Sci Technol; 2019; 73(4):345-355. PubMed ID: 30770482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applications of the Tunable Diode Laser Absorption Spectroscopy: In-Process Estimation of Primary Drying Heterogeneity and Product Temperature During Lyophilization.
    Sharma P; Kessler WJ; Bogner R; Thakur M; Pikal MJ
    J Pharm Sci; 2019 Jan; 108(1):416-430. PubMed ID: 30114403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat transfer in vial lyophilization.
    Brülls M; Rasmuson A
    Int J Pharm; 2002 Oct; 246(1-2):1-16. PubMed ID: 12270604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the design of the stopper including dimension, type, and vent area on lyophilization process.
    Mungikar A; Ludzinski M; Kamat M
    PDA J Pharm Sci Technol; 2010; 64(6):507-16. PubMed ID: 21502061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat and mass transfer scale-up issues during freeze-drying, I: atypical radiation and the edge vial effect.
    Rambhatla S; Pikal MJ
    AAPS PharmSciTech; 2003; 4(2):E14. PubMed ID: 12916896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The nonsteady state modeling of freeze drying: in-process product temperature and moisture content mapping and pharmaceutical product quality applications.
    Pikal MJ; Cardon S; Bhugra C; Jameel F; Rambhatla S; Mascarenhas WJ; Akay HU
    Pharm Dev Technol; 2005; 10(1):17-32. PubMed ID: 15776810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.