These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 27939980)
21. Ankle motor skill is intact in spinal cord injury, unlike stroke: implications for rehabilitation. van Hedel HJ; Wirth B; Curt A Neurology; 2010 Apr; 74(16):1271-8. PubMed ID: 20404308 [TBL] [Abstract][Full Text] [Related]
22. A unilateral section of the corticospinal tract at cervical level in primate does not lead to measurable cell loss in motor cortex. Wannier T; Schmidlin E; Bloch J; Rouiller EM J Neurotrauma; 2005 Jun; 22(6):703-17. PubMed ID: 15941378 [TBL] [Abstract][Full Text] [Related]
23. Rewiring of the corticospinal tract in the adult rat after unilateral stroke and anti-Nogo-A therapy. Lindau NT; Bänninger BJ; Gullo M; Good NA; Bachmann LC; Starkey ML; Schwab ME Brain; 2014 Mar; 137(Pt 3):739-56. PubMed ID: 24355710 [TBL] [Abstract][Full Text] [Related]
24. Electrical stimulation of spared corticospinal axons augments connections with ipsilateral spinal motor circuits after injury. Brus-Ramer M; Carmel JB; Chakrabarty S; Martin JH J Neurosci; 2007 Dec; 27(50):13793-801. PubMed ID: 18077691 [TBL] [Abstract][Full Text] [Related]
25. Motor Cortex Activity Organizes the Developing Rubrospinal System. Williams PT; Martin JH J Neurosci; 2015 Sep; 35(39):13363-74. PubMed ID: 26424884 [TBL] [Abstract][Full Text] [Related]
26. Cervical sprouting of corticospinal fibers after thoracic spinal cord injury accompanies shifts in evoked motor responses. Fouad K; Pedersen V; Schwab ME; Brösamle C Curr Biol; 2001 Nov; 11(22):1766-70. PubMed ID: 11719218 [TBL] [Abstract][Full Text] [Related]
27. Optogenetic Interrogation of Functional Synapse Formation by Corticospinal Tract Axons in the Injured Spinal Cord. Jayaprakash N; Wang Z; Hoeynck B; Krueger N; Kramer A; Balle E; Wheeler DS; Wheeler RA; Blackmore MG J Neurosci; 2016 May; 36(21):5877-90. PubMed ID: 27225775 [TBL] [Abstract][Full Text] [Related]
28. Three-dimensional reconstruction of corticospinal tract using one-photon confocal microscopy acquisition allows detection of axonal disruption in spinal cord injury. Quintá HR; Pasquini LA; Pasquini JM J Neurochem; 2015 Apr; 133(1):113-24. PubMed ID: 25565274 [TBL] [Abstract][Full Text] [Related]
29. Back seat driving: hindlimb corticospinal neurons assume forelimb control following ischaemic stroke. Starkey ML; Bleul C; Zörner B; Lindau NT; Mueggler T; Rudin M; Schwab ME Brain; 2012 Nov; 135(Pt 11):3265-81. PubMed ID: 23169918 [TBL] [Abstract][Full Text] [Related]
30. From cortex to cord: motor circuit plasticity after spinal cord injury. Brown AR; Martinez M Neural Regen Res; 2019 Dec; 14(12):2054-2062. PubMed ID: 31397332 [TBL] [Abstract][Full Text] [Related]
31. Task-dependent compensation after pyramidal tract and dorsolateral spinal lesions in rats. Kanagal SG; Muir GD Exp Neurol; 2009 Mar; 216(1):193-206. PubMed ID: 19118552 [TBL] [Abstract][Full Text] [Related]
32. An Automated Test of Rat Forelimb Supination Quantifies Motor Function Loss and Recovery After Corticospinal Injury. Sindhurakar A; Butensky SD; Meyers E; Santos J; Bethea T; Khalili A; Sloan AP; Rennaker RL; Carmel JB Neurorehabil Neural Repair; 2017 Feb; 31(2):122-132. PubMed ID: 27530125 [TBL] [Abstract][Full Text] [Related]
33. MRI investigation of the sensorimotor cortex and the corticospinal tract after acute spinal cord injury: a prospective longitudinal study. Freund P; Weiskopf N; Ashburner J; Wolf K; Sutter R; Altmann DR; Friston K; Thompson A; Curt A Lancet Neurol; 2013 Sep; 12(9):873-881. PubMed ID: 23827394 [TBL] [Abstract][Full Text] [Related]
34. Compensatory changes at the cerebral cortical level after spinal cord injury. Nishimura Y; Isa T Neuroscientist; 2009 Oct; 15(5):436-44. PubMed ID: 19826168 [TBL] [Abstract][Full Text] [Related]
35. Effects of rehabilitative training on recovery of hand motor function: a review of animal studies. Higo N Neurosci Res; 2014 Jan; 78():9-15. PubMed ID: 24080147 [TBL] [Abstract][Full Text] [Related]
36. Neurotrophins reduce degeneration of injured ascending sensory and corticospinal motor axons in adult rat spinal cord. Sayer FT; Oudega M; Hagg T Exp Neurol; 2002 May; 175(1):282-96. PubMed ID: 12009779 [TBL] [Abstract][Full Text] [Related]
37. Retrograde degeneration of corticospinal axons following transection of the spinal cord in rats. A quantitative study with anterogradely transported horseradish peroxidase. Pallini R; Fernandez E; Sbriccoli A J Neurosurg; 1988 Jan; 68(1):124-8. PubMed ID: 3335897 [TBL] [Abstract][Full Text] [Related]