These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 27940079)
1. Leaching of electrodic powders from lithium ion batteries: Optimization of operating conditions and effect of physical pretreatment for waste fraction retrieval. Pagnanelli F; Moscardini E; Altimari P; Abo Atia T; Toro L Waste Manag; 2017 Feb; 60():706-715. PubMed ID: 27940079 [TBL] [Abstract][Full Text] [Related]
2. Cobalt products from real waste fractions of end of life lithium ion batteries. Pagnanelli F; Moscardini E; Altimari P; Abo Atia T; Toro L Waste Manag; 2016 May; 51():214-221. PubMed ID: 26564258 [TBL] [Abstract][Full Text] [Related]
3. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries. Chen X; Chen Y; Zhou T; Liu D; Hu H; Fan S Waste Manag; 2015 Apr; 38():349-56. PubMed ID: 25619126 [TBL] [Abstract][Full Text] [Related]
4. A sustainable process for the recovery of valuable metals from spent lithium-ion batteries. Fan B; Chen X; Zhou T; Zhang J; Xu B Waste Manag Res; 2016 May; 34(5):474-81. PubMed ID: 26951340 [TBL] [Abstract][Full Text] [Related]
5. Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media. Chen X; Zhou T Waste Manag Res; 2014 Nov; 32(11):1083-93. PubMed ID: 25378255 [TBL] [Abstract][Full Text] [Related]
6. Subcritical Water Extraction of Valuable Metals from Spent Lithium-Ion Batteries. Lie J; Tanda S; Liu JC Molecules; 2020 May; 25(9):. PubMed ID: 32384592 [TBL] [Abstract][Full Text] [Related]
7. Recovery of cobalt from spent lithium-ion batteries using supercritical carbon dioxide extraction. Bertuol DA; Machado CM; Silva ML; Calgaro CO; Dotto GL; Tanabe EH Waste Manag; 2016 May; 51():245-251. PubMed ID: 26970842 [TBL] [Abstract][Full Text] [Related]
8. An environmental benign process for cobalt and lithium recovery from spent lithium-ion batteries by mechanochemical approach. Wang MM; Zhang CC; Zhang FS Waste Manag; 2016 May; 51():239-244. PubMed ID: 26965214 [TBL] [Abstract][Full Text] [Related]
9. Selective reductive leaching of cobalt and lithium from industrially crushed waste Li-ion batteries in sulfuric acid system. Peng C; Hamuyuni J; Wilson BP; Lundström M Waste Manag; 2018 Jun; 76():582-590. PubMed ID: 29510945 [TBL] [Abstract][Full Text] [Related]
10. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone. Jha MK; Kumari A; Jha AK; Kumar V; Hait J; Pandey BD Waste Manag; 2013 Sep; 33(9):1890-7. PubMed ID: 23773705 [TBL] [Abstract][Full Text] [Related]
11. Countercurrent leaching of Ni, Co, Mn, and Li from spent lithium-ion batteries. Jian Y; Yanqing L; Fangyang L; Ming J; Liangxing J Waste Manag Res; 2020 Dec; 38(12):1358-1366. PubMed ID: 32720588 [TBL] [Abstract][Full Text] [Related]
12. Recovery of metals from a mixture of various spent batteries by a hydrometallurgical process. Tanong K; Coudert L; Mercier G; Blais JF J Environ Manage; 2016 Oct; 181():95-107. PubMed ID: 27318877 [TBL] [Abstract][Full Text] [Related]
13. Recovery of valuable metals from cathodic active material of spent lithium ion batteries: Leaching and kinetic aspects. Meshram P; Pandey BD; Mankhand TR Waste Manag; 2015 Nov; 45():306-13. PubMed ID: 26087645 [TBL] [Abstract][Full Text] [Related]
14. Recovery of valuable elements from spent Li-batteries. Paulino JF; Busnardo NG; Afonso JC J Hazard Mater; 2008 Feb; 150(3):843-9. PubMed ID: 18054156 [TBL] [Abstract][Full Text] [Related]
15. Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries. Sun L; Qiu K Waste Manag; 2012 Aug; 32(8):1575-82. PubMed ID: 22534072 [TBL] [Abstract][Full Text] [Related]
16. Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant. Li L; Ge J; Wu F; Chen R; Chen S; Wu B J Hazard Mater; 2010 Apr; 176(1-3):288-93. PubMed ID: 19954882 [TBL] [Abstract][Full Text] [Related]
17. Novel electrochemical process for recycling of valuable metals from spent lithium-ion batteries. Pei S; Yan S; Chen X; Li J; Xu J Waste Manag; 2024 Nov; 188():1-10. PubMed ID: 39084179 [TBL] [Abstract][Full Text] [Related]
18. Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries. Li L; Ge J; Chen R; Wu F; Chen S; Zhang X Waste Manag; 2010 Dec; 30(12):2615-21. PubMed ID: 20817431 [TBL] [Abstract][Full Text] [Related]