These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 27940114)
1. Innovative methodology for recovering titanium and chromium from a raw ilmenite concentrate by magnetic separation after modifying magnetic properties. Lv JF; Zhang HP; Tong X; Fan CL; Yang WT; Zheng YX J Hazard Mater; 2017 Mar; 325():251-260. PubMed ID: 27940114 [TBL] [Abstract][Full Text] [Related]
2. Separation of Iron and Rare Earths from Low-Intensity Magnetic Separation (LIMS) Tailings through Magnetization Roasting-Magnetic Separation. Hou S; Wang W; Zhang B; Li W; Guo C; Li Q; Li E ChemistryOpen; 2024 Feb; 13(2):e202300059. PubMed ID: 37902712 [TBL] [Abstract][Full Text] [Related]
3. A novel reductive alkali roasting of chromite ores for carcinogen-free Cr Escudero-Castejón L; Taylor J; Sánchez-Segado S; Jha A J Hazard Mater; 2021 Feb; 403():123589. PubMed ID: 32795821 [TBL] [Abstract][Full Text] [Related]
4. Innovative methodology for comprehensive utilization of iron ore tailings: part 1. The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting. Li C; Sun H; Bai J; Li L J Hazard Mater; 2010 Feb; 174(1-3):71-7. PubMed ID: 19782467 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of the potential of recovering various valuable elements from a vanadiferous titanomagnetite tailing based on chemical and process mineralogical characterization. Liu J; Xing Z; Liu J; Ding X; Xue X Environ Sci Pollut Res Int; 2023 Jul; 30(35):83991-84001. PubMed ID: 37351754 [TBL] [Abstract][Full Text] [Related]
6. New insights on scandium separation from scandium concentrate with titanium dioxide wastewater. Xiao J; Zhong N; Cheng R; Deng B; Zhang J Environ Sci Pollut Res Int; 2024 Feb; 31(10):15837-15850. PubMed ID: 38305971 [TBL] [Abstract][Full Text] [Related]
7. Arsenic Removal and Iron Recovery from Arsenic-Bearing Iron Ores by Calcification-Magnetic Roasting and Magnetic Separation Process. Dai M; Zhou Y; Xiao Q; Lv J; Huang L; Xie X; Hu Y; Tong X; Chun T Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959481 [TBL] [Abstract][Full Text] [Related]
8. Beneficiation of Low-Grade Hematite Iron Ore Fines by Magnetizing Roasting and Magnetic Separation. Kukkala PC; Kumar S; Nirala A; Khan MA; Alkahtani MQ; Islam S ACS Omega; 2024 Feb; 9(7):7634-7642. PubMed ID: 38405511 [TBL] [Abstract][Full Text] [Related]
9. Recovery of iron from cyanide tailings with reduction roasting-water leaching followed by magnetic separation. Zhang Y; Li H; Yu X J Hazard Mater; 2012 Apr; 213-214():167-74. PubMed ID: 22333161 [TBL] [Abstract][Full Text] [Related]
10. A semi-industrial experiment of suspension magnetization roasting technology for separation of iron minerals from red mud. Yuan S; Liu X; Gao P; Han Y J Hazard Mater; 2020 Jul; 394():122579. PubMed ID: 32283382 [TBL] [Abstract][Full Text] [Related]
11. Biomass waste as a clean reductant for iron recovery of iron tailings by magnetization roasting. Deng J; Ning XA; Shen J; Ou W; Chen J; Qiu G; Wang Y; He Y J Environ Manage; 2022 Sep; 317():115435. PubMed ID: 35751253 [TBL] [Abstract][Full Text] [Related]
12. Selective leaching of vanadium over iron from vanadium slag. Zhang X; Fang D; Song S; Cheng G; Xue X J Hazard Mater; 2019 Apr; 368():300-307. PubMed ID: 30685718 [TBL] [Abstract][Full Text] [Related]
13. Process Optimization and Modeling of Microwave Roasting of Bastnasite Concentrate Using Response Surface Methodology. Zheng Q; Xu Y; Ma S; Tian Y; Guan W; Li Y ACS Omega; 2021 Apr; 6(15):10486-10496. PubMed ID: 34056201 [TBL] [Abstract][Full Text] [Related]
14. Sufficient extraction of Cr from chromium ore processing residue (COPR) by selective Mg removal. Zhang J; Xie W; Chu S; Liu Z; Wu Z; Lan Y; Galvita VV; Zhang L; Su X J Hazard Mater; 2022 Oct; 440():129754. PubMed ID: 35985215 [TBL] [Abstract][Full Text] [Related]
15. Studies on the Processing of Fine Dusts from the Electric Smelting of Ilmenite Concentrates to Obtain Titanium Dioxide. Ultarakova A; Karshyga Z; Lokhova N; Yessengaziyev A; Kassymzhanov K; Mukangaliyeva A Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499809 [TBL] [Abstract][Full Text] [Related]
16. Selective recovery of chromium from ferronickel slag via alkaline roasting followed by water leaching. Gu F; Zhang Y; Peng Z; Su Z; Tang H; Tian W; Liang G; Lee J; Rao M; Li G; Jiang T J Hazard Mater; 2019 Jul; 374():83-91. PubMed ID: 30981016 [TBL] [Abstract][Full Text] [Related]
17. Greek "red mud" residue: a study of microwave reductive roasting followed by magnetic separation for a metallic iron recovery process. Samouhos M; Taxiarchou M; Tsakiridis PE; Potiriadis K J Hazard Mater; 2013 Jun; 254-255():193-205. PubMed ID: 23611801 [TBL] [Abstract][Full Text] [Related]
18. Recovery of iron from vanadium tailings with coal-based direct reduction followed by magnetic separation. Yang H; Jing L; Zhang B J Hazard Mater; 2011 Jan; 185(2-3):1405-11. PubMed ID: 21071144 [TBL] [Abstract][Full Text] [Related]
19. Enrichment Characteristics of Cr in Chromium Slag after Pre-Reduction and Melting/Magnetic Separation Treatment. Hu S; Wang D; Li X; Zhao W; Qu T; Wang Y Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501027 [TBL] [Abstract][Full Text] [Related]
20. An efficient utilization of chromium-containing vanadium tailings: Extraction of chromium by soda roasting-water leaching and preparation of chromium oxide. Wen J; Jiang T; Gao H; Zhou W; Xu Y; Zheng X; Liu Y; Xue X J Environ Manage; 2019 Aug; 244():119-126. PubMed ID: 31112876 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]