These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 27940168)

  • 21. High-density fabrication of normally closed microfluidic valves by patterned deactivation of oxidized polydimethylsiloxane.
    Mosadegh B; Tavana H; Lesher-Perez SC; Takayama S
    Lab Chip; 2011 Feb; 11(4):738-42. PubMed ID: 21132212
    [TBL] [Abstract][Full Text] [Related]  

  • 22. OncomiR detection in circulating body fluids: a PDMS microdevice perspective.
    Potrich C; Vaghi V; Lunelli L; Pasquardini L; Santini GC; Ottone C; Quaglio M; Cocuzza M; Pirri CF; Ferracin M; Negrini M; Tiberio P; De Sanctis V; Bertorelli R; Pederzolli C
    Lab Chip; 2014 Oct; 14(20):4067-75. PubMed ID: 25178053
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface Modification of Poly(dimethylsiloxane) Using Ionic Complementary Peptides to Minimize Nonspecific Protein Adsorption.
    Yu X; Xiao J; Dang F
    Langmuir; 2015 Jun; 31(21):5891-8. PubMed ID: 25966872
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PDMS compound adsorption in context.
    Li N; Schwartz M; Ionescu-Zanetti C
    J Biomol Screen; 2009 Feb; 14(2):194-202. PubMed ID: 19196703
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical and experimental study of capillary-driven flow of PCR solution in hybrid hydrophobic microfluidic networks.
    Ramalingam N; Warkiani ME; Ramalingam N; Keshavarzi G; Hao-Bing L; Hai-Qing TG
    Biomed Microdevices; 2016 Aug; 18(4):68. PubMed ID: 27432321
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface modification of PDMS microfluidic devices by controlled sulfuric acid treatment and the application in chip electrophoresis.
    Gitlin L; Schulze P; Ohla S; Bongard HJ; Belder D
    Electrophoresis; 2015 Feb; 36(3):449-56. PubMed ID: 25257973
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Virtual walls in microchannels.
    Xu W; Xue H; Bachman M; Li GP
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2840-3. PubMed ID: 17946533
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface modification for PDMS-based microfluidic devices.
    Zhou J; Khodakov DA; Ellis AV; Voelcker NH
    Electrophoresis; 2012 Jan; 33(1):89-104. PubMed ID: 22128067
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microfluidic flow control on charged phospholipid polymer interface.
    Xu Y; Takai M; Konno T; Ishihara K
    Lab Chip; 2007 Feb; 7(2):199-206. PubMed ID: 17268622
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models.
    van Midwoud PM; Janse A; Merema MT; Groothuis GM; Verpoorte E
    Anal Chem; 2012 May; 84(9):3938-44. PubMed ID: 22444457
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrochemical detection of cardiac troponin I using a microchip with the surface-functionalized poly(dimethylsiloxane) channel.
    Ko S; Kim B; Jo SS; Oh SY; Park JK
    Biosens Bioelectron; 2007 Aug; 23(1):51-9. PubMed ID: 17462876
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Non-specific adsorption of protein to microfluidic materials.
    Rashid S; Ward-Bond J; Krupin O; Berini P
    Colloids Surf B Biointerfaces; 2021 Dec; 208():112138. PubMed ID: 34614455
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Colloidal surface interactions and membrane fouling: investigations at pore scale.
    Bacchin P; Marty A; Duru P; Meireles M; Aimar P
    Adv Colloid Interface Sci; 2011 May; 164(1-2):2-11. PubMed ID: 21130419
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-efficiency single-cell entrapment and fluorescence in situ hybridization analysis using a poly(dimethylsiloxane) microfluidic device integrated with a black poly(ethylene terephthalate) micromesh.
    Matsunaga T; Hosokawa M; Arakaki A; Taguchi T; Mori T; Tanaka T; Takeyama H
    Anal Chem; 2008 Jul; 80(13):5139-45. PubMed ID: 18537270
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessing reusability of microfluidic devices: Urinary protein uptake by PDMS-based channels after long-term cyclic use.
    Amin R; Li L; Tasoglu S
    Talanta; 2019 Jan; 192():455-462. PubMed ID: 30348417
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solid phase DNA extraction on PDMS and direct amplification.
    Pasquardini L; Potrich C; Quaglio M; Lamberti A; Guastella S; Lunelli L; Cocuzza M; Vanzetti L; Pirri CF; Pederzolli C
    Lab Chip; 2011 Dec; 11(23):4029-35. PubMed ID: 21989780
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lab on a chip and circulating tumor cells.
    Fan ZH; Beebe DJ
    Lab Chip; 2014 Jan; 14(1):12-3. PubMed ID: 24247213
    [No Abstract]   [Full Text] [Related]  

  • 38. Grafting epoxy-modified hydrophilic polymers onto poly(dimethylsiloxane) microfluidic chip to resist nonspecific protein adsorption.
    Wu D; Zhao B; Dai Z; Qin J; Lin B
    Lab Chip; 2006 Jul; 6(7):942-7. PubMed ID: 16804600
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solution-phase surface modification in intact poly(dimethylsiloxane) microfluidic channels.
    Sui G; Wang J; Lee CC; Lu W; Lee SP; Leyton JV; Wu AM; Tseng HR
    Anal Chem; 2006 Aug; 78(15):5543-51. PubMed ID: 16878894
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Straightforward and Ultrastable Surface Modification of Microfluidic Chips with Norepinephrine Bitartrate Improves Performance in Immunoassays.
    Shen H; Qu F; Xia Y; Jiang X
    Anal Chem; 2018 Mar; 90(6):3697-3702. PubMed ID: 29478312
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.