These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 27940168)

  • 41. Dendrimer-functionalized self-assembled monolayers as a surface plasmon resonance sensor surface.
    Mark SS; Sandhyarani N; Zhu C; Campagnolo C; Batt CA
    Langmuir; 2004 Aug; 20(16):6808-17. PubMed ID: 15274589
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of PDMS-modified glass from cast-and-peel fabrication.
    Liu K; Tian Y; Pitchimani R; Huang M; Lincoln H; Pappas D
    Talanta; 2009 Jul; 79(2):333-8. PubMed ID: 19559887
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Simple, fast and high-throughput single-cell analysis on PDMS microfluidic chips.
    Yu L; Huang H; Dong X; Wu D; Qin J; Lin B
    Electrophoresis; 2008 Dec; 29(24):5055-60. PubMed ID: 19130590
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Superhydrophobic surfaces as an on-chip microfluidic toolkit for total droplet control.
    Draper MC; Crick CR; Orlickaite V; Turek VA; Parkin IP; Edel JB
    Anal Chem; 2013 Jun; 85(11):5405-10. PubMed ID: 23627493
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A disposable microfluidic device with a reusable magnetophoretic functional substrate for isolation of circulating tumor cells.
    Cho H; Kim J; Jeon CW; Han KH
    Lab Chip; 2017 Nov; 17(23):4113-4123. PubMed ID: 29094741
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Inkjet-printed microelectrodes on PDMS as biosensors for functionalized microfluidic systems.
    Wu J; Wang R; Yu H; Li G; Xu K; Tien NC; Roberts RC; Li D
    Lab Chip; 2015 Feb; 15(3):690-5. PubMed ID: 25412449
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Incorporation of electrospun nanofibrous PVDF membranes into a microfluidic chip assembled by PDMS and scotch tape for immunoassays.
    Liu Y; Yang D; Yu T; Jiang X
    Electrophoresis; 2009 Sep; 30(18):3269-75. PubMed ID: 19722208
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sorption of Neuropsychopharmaca in Microfluidic Materials for
    Winkler TE; Herland A
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45161-45174. PubMed ID: 34528803
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Preparation and characterization of dense films of poly(amidoamine) dendrimers on indium tin oxide.
    Schlapak R; Armitage D; Saucedo-Zeni N; Latini G; Gruber HJ; Mesquida P; Samotskaya Y; Hohage M; Cacialli F; Howorka S
    Langmuir; 2007 Aug; 23(17):8916-24. PubMed ID: 17636991
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Functionalized PDMS with Versatile and Scalable Surface Roughness Gradients for Cell Culture.
    Zhou B; Gao X; Wang C; Ye Z; Gao Y; Xie J; Wu X; Wen W
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17181-7. PubMed ID: 26194178
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Superhydrophobicity for antifouling microfluidic surfaces.
    Shirtcliffe NJ; Roach P
    Methods Mol Biol; 2013; 949():269-81. PubMed ID: 23329449
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Universal hydrophilic coating of thermoplastic polymers currently used in microfluidics.
    Zilio C; Sola L; Damin F; Faggioni L; Chiari M
    Biomed Microdevices; 2014 Feb; 16(1):107-14. PubMed ID: 24037663
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A SERS-active microfluidic device with tunable surface plasmon resonances.
    Xu BB; Ma ZC; Wang H; Liu XQ; Zhang YL; Zhang XL; Zhang R; Jiang HB; Sun HB
    Electrophoresis; 2011 Nov; 32(23):3378-84. PubMed ID: 22072533
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Digital quantification of DNA via isothermal amplification on a self-driven microfluidic chip featuring hydrophilic film-coated polydimethylsiloxane.
    Ma YD; Chang WH; Luo K; Wang CH; Liu SY; Yen WH; Lee GB
    Biosens Bioelectron; 2018 Jan; 99():547-554. PubMed ID: 28823979
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Surface modification of poly(dimethylsiloxane) with a perfluorinated alkoxysilane for selectivity toward fluorous tagged peptides.
    Wang D; Goel V; Oleschuk RD; Horton JH
    Langmuir; 2008 Feb; 24(3):1080-6. PubMed ID: 18163653
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A simple method to determine the surface charge in microfluidic channels.
    Mampallil D; van den Ende D; Mugele F
    Electrophoresis; 2010 Jan; 31(3):563-9. PubMed ID: 20119966
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dual-wavelength fluorescent detection of particles on a novel microfluidic chip.
    Jiang H; Weng X; Li D
    Lab Chip; 2013 Mar; 13(5):843-50. PubMed ID: 23291857
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Non-fouling microfluidic chip produced by radio frequency tetraglyme plasma deposition.
    Salim M; Mishra G; Fowler GJ; O'sullivan B; Wright PC; McArthur SL
    Lab Chip; 2007 Apr; 7(4):523-5. PubMed ID: 17389972
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Poly(N-vinylpyrrolidone)-modified poly(dimethylsiloxane) elastomers as anti-biofouling materials.
    Wu Z; Tong W; Jiang W; Liu X; Wang Y; Chen H
    Colloids Surf B Biointerfaces; 2012 Aug; 96():37-43. PubMed ID: 22510455
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.