These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 27940235)
1. Chemically modified cellulose strips with pyridoxal conjugated red fluorescent gold nanoclusters for nanomolar detection of mercuric ions. Bothra S; Upadhyay Y; Kumar R; Ashok Kumar SK; Sahoo SK Biosens Bioelectron; 2017 Apr; 90():329-335. PubMed ID: 27940235 [TBL] [Abstract][Full Text] [Related]
2. A biomimetic approach to conjugate vitamin B Bothra S; Babu LT; Paira P; Ashok Kumar SK; Kumar R; Sahoo SK Anal Bioanal Chem; 2018 Jan; 410(1):201-210. PubMed ID: 29098339 [TBL] [Abstract][Full Text] [Related]
3. A label-free method for detecting biological thiols based on blocking of Hg2+-quenching of fluorescent gold nanoclusters. Park KS; Kim MI; Woo MA; Park HG Biosens Bioelectron; 2013 Jul; 45():65-9. PubMed ID: 23454739 [TBL] [Abstract][Full Text] [Related]
4. Sensitive detection of alkaline phosphatase by switching on gold nanoclusters fluorescence quenched by pyridoxal phosphate. Halawa MI; Gao W; Saqib M; Kitte SA; Wu F; Xu G Biosens Bioelectron; 2017 Sep; 95():8-14. PubMed ID: 28399445 [TBL] [Abstract][Full Text] [Related]
5. Tuning of gold nanoclusters sensing applications with bovine serum albumin and bromelain for detection of Hg Bhamore JR; Jha S; Basu H; Singhal RK; Murthy ZVP; Kailasa SK Anal Bioanal Chem; 2018 Apr; 410(11):2781-2791. PubMed ID: 29480389 [TBL] [Abstract][Full Text] [Related]
6. Label-free turn-on fluorescent detection of melamine based on the anti-quenching ability of Hg 2+ to gold nanoclusters. Dai H; Shi Y; Wang Y; Sun Y; Hu J; Ni P; Li Z Biosens Bioelectron; 2014 Mar; 53():76-81. PubMed ID: 24121226 [TBL] [Abstract][Full Text] [Related]
7. Highly selective fluorescent sensors for Hg(2+) based on bovine serum albumin-capped gold nanoclusters. Hu D; Sheng Z; Gong P; Zhang P; Cai L Analyst; 2010 Jun; 135(6):1411-6. PubMed ID: 20419194 [TBL] [Abstract][Full Text] [Related]
8. Ultrasensitive sensing of Hg(2+) and CH(3)Hg(+) based on the fluorescence quenching of lysozyme type VI-stabilized gold nanoclusters. Lin YH; Tseng WL Anal Chem; 2010 Nov; 82(22):9194-200. PubMed ID: 20954728 [TBL] [Abstract][Full Text] [Related]
9. A label-free fluorescent assay for free chlorine in drinking water based on protein-stabilized gold nanoclusters. Xiong X; Tang Y; Zhang L; Zhao S Talanta; 2015 Jan; 132():790-5. PubMed ID: 25476379 [TBL] [Abstract][Full Text] [Related]
10. Terbium(III)/gold nanocluster conjugates: the development of a novel ratiometric fluorescent probe for mercury(II) and a paper-based visual sensor. Qi YX; Zhang M; Zhu A; Shi G Analyst; 2015 Aug; 140(16):5656-61. PubMed ID: 26140286 [TBL] [Abstract][Full Text] [Related]
11. Fluorescein-5-isothiocyanate-conjugated protein-directed synthesis of gold nanoclusters for fluorescent ratiometric sensing of an enzyme-substrate system. Ke CY; Wu YT; Tseng WL Biosens Bioelectron; 2015 Jul; 69():46-53. PubMed ID: 25703728 [TBL] [Abstract][Full Text] [Related]
12. Fluorescence quenching for chloramphenicol detection in milk based on protein-stabilized Au nanoclusters. Tan Z; Xu H; Li G; Yang X; Choi MM Spectrochim Acta A Mol Biomol Spectrosc; 2015; 149():615-20. PubMed ID: 25985125 [TBL] [Abstract][Full Text] [Related]
13. Pyridoxamine driven selective turn-off detection of picric acid using glutathione stabilized fluorescent copper nanoclusters and its applications with chemically modified cellulose strips. Patel R; Bothra S; Kumar R; Crisponi G; Sahoo SK Biosens Bioelectron; 2018 Apr; 102():196-203. PubMed ID: 29145072 [TBL] [Abstract][Full Text] [Related]
14. Masking method for improving selectivity of gold nanoclusters in fluorescence determination of mercury and copper ions. Cao D; Fan J; Qiu J; Tu Y; Yan J Biosens Bioelectron; 2013 Apr; 42():47-50. PubMed ID: 23202329 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of folic acid-sensitive gold nanoclusters for turn-on fluorescent imaging of overexpression of folate receptor in tumor cells. Li H; Cheng Y; Liu Y; Chen B Talanta; 2016 Sep; 158():118-124. PubMed ID: 27343585 [TBL] [Abstract][Full Text] [Related]
16. A "turn-on" fluorescent sensor for ozone detection in ambient air using protein-directed gold nanoclusters. Wu D; Qi W; Liu C; Zhang Q Anal Bioanal Chem; 2017 Apr; 409(10):2539-2546. PubMed ID: 28124753 [TBL] [Abstract][Full Text] [Related]
17. Label-free and selective sensing of uric acid with gold nanoclusters as optical probe. Wang J; Chang Y; Wu WB; Zhang P; Lie SQ; Huang CZ Talanta; 2016 May; 152():314-20. PubMed ID: 26992526 [TBL] [Abstract][Full Text] [Related]
19. Determination of the activity of telomerase in cancer cells by using BSA-protected gold nanoclusters as a fluorescent probe. Xu Y; Zhang P; Wang Z; Lv S; Ding C Mikrochim Acta; 2018 Feb; 185(3):198. PubMed ID: 29594751 [TBL] [Abstract][Full Text] [Related]
20. Highly selective and ultrasensitive detection of nitrite based on fluorescent gold nanoclusters. Liu H; Yang G; Abdel-Halim ES; Zhu JJ Talanta; 2013 Jan; 104():135-9. PubMed ID: 23597900 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]