These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 27940363)

  • 21. Realistic modelling of receptor activation in hippocampal excitatory synapses: analysis of multivesicular release, release location, temperature and synaptic cross-talk.
    Boucher J; Kröger H; Sík A
    Brain Struct Funct; 2010 Jul; 215(1):49-65. PubMed ID: 20526850
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Postsynaptically silent synapses in single neuron cultures.
    Gomperts SN; Rao A; Craig AM; Malenka RC; Nicoll RA
    Neuron; 1998 Dec; 21(6):1443-51. PubMed ID: 9883736
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heterologous modulation of inhibitory synaptic transmission by metabotropic glutamate receptors in cultured hippocampal neurons.
    Fitzsimonds RM; Dichter MA
    J Neurophysiol; 1996 Feb; 75(2):885-93. PubMed ID: 8714661
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms underlying dedepression of synaptic NMDA receptors in the hippocampus.
    Morishita W; Malenka RC
    J Neurophysiol; 2008 Jan; 99(1):254-63. PubMed ID: 17989241
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Zinc-induced augmentation of excitatory synaptic currents and glutamate receptor responses in hippocampal CA3 neurons.
    Lin DD; Cohen AS; Coulter DA
    J Neurophysiol; 2001 Mar; 85(3):1185-96. PubMed ID: 11247988
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanoscale co-organization and coactivation of AMPAR, NMDAR, and mGluR at excitatory synapses.
    Goncalves J; Bartol TM; Camus C; Levet F; Menegolla AP; Sejnowski TJ; Sibarita JB; Vivaudou M; Choquet D; Hosy E
    Proc Natl Acad Sci U S A; 2020 Jun; 117(25):14503-14511. PubMed ID: 32513712
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 'Deaf, mute and whispering' silent synapses: their role in synaptic plasticity.
    Voronin LL; Cherubini E
    J Physiol; 2004 May; 557(Pt 1):3-12. PubMed ID: 15034124
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glutamate suppresses GABA release via presynaptic metabotropic glutamate receptors at baroreceptor neurones in rats.
    Chen CY; Bonham AC
    J Physiol; 2005 Jan; 562(Pt 2):535-51. PubMed ID: 15539399
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reduction in glutamate uptake is associated with extrasynaptic NMDA and metabotropic glutamate receptor activation at the hippocampal CA1 synapse of aged rats.
    Potier B; Billard JM; Rivière S; Sinet PM; Denis I; Champeil-Potokar G; Grintal B; Jouvenceau A; Kollen M; Dutar P
    Aging Cell; 2010 Oct; 9(5):722-35. PubMed ID: 20569241
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synaptic strength at the temporoammonic input to the hippocampal CA1 region in vivo is regulated by NMDA receptors, metabotropic glutamate receptors and voltage-gated calcium channels.
    Aksoy-Aksel A; Manahan-Vaughan D
    Neuroscience; 2015 Nov; 309():191-9. PubMed ID: 25791230
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabotropic glutamate receptors modulate glutamatergic and GABAergic synaptic transmission in the central nucleus of the inferior colliculus.
    Farazifard R; Wu SH
    Brain Res; 2010 Apr; 1325():28-40. PubMed ID: 20153735
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prolonged physiological entrapment of glutamate in the synaptic cleft of cerebellar unipolar brush cells.
    Kinney GA; Overstreet LS; Slater NT
    J Neurophysiol; 1997 Sep; 78(3):1320-33. PubMed ID: 9310423
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NMDA Receptors Containing GluN2B/2C/2D Subunits Mediate an Increase in Glutamate Release at Hippocampal CA3-CA1 Synapses.
    Prius-Mengual J; Pérez-Rodríguez M; Andrade-Talavera Y; Rodríguez-Moreno A
    Mol Neurobiol; 2019 Mar; 56(3):1694-1706. PubMed ID: 29916144
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temperature dependence of N-methyl-D-aspartate receptor channels and N-methyl-D-aspartate receptor excitatory postsynaptic currents.
    Korinek M; Sedlacek M; Cais O; Dittert I; Vyklicky L
    Neuroscience; 2010 Feb; 165(3):736-48. PubMed ID: 19883737
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of Metabotropic Glutamate Receptor Internalization and Synaptic AMPA Receptor Endocytosis by the Postsynaptic Protein Norbin.
    Ojha P; Pal S; Bhattacharyya S
    J Neurosci; 2022 Feb; 42(5):731-748. PubMed ID: 34907024
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extracellular glutamate diffusion determines the occupancy of glutamate receptors at CA1 synapses in the hippocampus.
    Kullmann DM; Min MY; Asztely F; Rusakov DA
    Philos Trans R Soc Lond B Biol Sci; 1999 Feb; 354(1381):395-402. PubMed ID: 10212489
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Postsynaptic conversion of silent synapses during LTP affects synaptic gain and transmission dynamics.
    Poncer JC; Malinow R
    Nat Neurosci; 2001 Oct; 4(10):989-96. PubMed ID: 11544481
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sapap3 deletion causes mGluR5-dependent silencing of AMPAR synapses.
    Wan Y; Feng G; Calakos N
    J Neurosci; 2011 Nov; 31(46):16685-91. PubMed ID: 22090495
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Silent synapses in the developing hippocampus: lack of functional AMPA receptors or low probability of glutamate release?
    Gasparini S; Saviane C; Voronin LL; Cherubini E
    Proc Natl Acad Sci U S A; 2000 Aug; 97(17):9741-6. PubMed ID: 10931951
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparing fluctuations of synaptic responses mediated via AMPA and NMDA receptor channels--implications for synaptic plasticity.
    Xiao MY; Niu YP; Dozmorov M; Wigström H
    Biosystems; 2001; 62(1-3):45-56. PubMed ID: 11595318
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.