These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 2794052)

  • 1. Plasma binding and transport of diazepam across the blood-brain barrier. No evidence for in vivo enhanced dissociation.
    Dubey RK; McAllister CB; Inoue M; Wilkinson GR
    J Clin Invest; 1989 Oct; 84(4):1155-9. PubMed ID: 2794052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of protein binding and experimental disease states on brain uptake of benzodiazepines in rats.
    Lin TH; Lin JH
    J Pharmacol Exp Ther; 1990 Apr; 253(1):45-50. PubMed ID: 1970363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of steroid hormones through the rat blood-brain barrier. Primary role of albumin-bound hormone.
    Pardridge WM; Mietus LJ
    J Clin Invest; 1979 Jul; 64(1):145-54. PubMed ID: 447850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain uptake of benzodiazepines: effects of lipophilicity and plasma protein binding.
    Jones DR; Hall SD; Jackson EK; Branch RA; Wilkinson GR
    J Pharmacol Exp Ther; 1988 Jun; 245(3):816-22. PubMed ID: 3385643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revisiting atenolol as a low passive permeability marker.
    Chen X; Slättengren T; de Lange ECM; Smith DE; Hammarlund-Udenaes M
    Fluids Barriers CNS; 2017 Oct; 14(1):30. PubMed ID: 29089037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stereospecificity of triiodothyronine transport into brain, liver, and salivary gland: role of carrier- and plasma protein-mediated transport.
    Terasaki T; Pardridge WM
    Endocrinology; 1987 Sep; 121(3):1185-91. PubMed ID: 3622378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative evaluation of brain distribution and blood-brain barrier efflux transport of probenecid in rats by microdialysis: possible involvement of the monocarboxylic acid transport system.
    Deguchi Y; Nozawa K; Yamada S; Yokoyama Y; Kimura R
    J Pharmacol Exp Ther; 1997 Feb; 280(2):551-60. PubMed ID: 9023263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo blood-brain barrier transport of oxycodone in the rat: indications for active influx and implications for pharmacokinetics/pharmacodynamics.
    Boström E; Simonsson US; Hammarlund-Udenaes M
    Drug Metab Dispos; 2006 Sep; 34(9):1624-31. PubMed ID: 16763013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacokinetics of pericyte involvement in small-molecular drug transport across the blood-brain barrier.
    Mihajlica N; Betsholtz C; Hammarlund-Udenaes M
    Eur J Pharm Sci; 2018 Sep; 122():77-84. PubMed ID: 29933077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic analysis of 3-quinuclidinyl 4-[125I]iodobenzilate transport and specific binding to muscarinic acetylcholine receptor in rat brain in vivo: implications for human studies.
    Sawada Y; Hiraga S; Francis B; Patlak C; Pettigrew K; Ito K; Owens E; Gibson R; Reba R; Eckelman W
    J Cereb Blood Flow Metab; 1990 Nov; 10(6):781-807. PubMed ID: 2134838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein-mediated hepatic uptake of rose bengal in analbuminemic mutant rats (NAR). Albumin is not indispensable to the protein-mediated transport of rose bengal.
    Tsao SC; Sugiyama Y; Shinmura K; Sawada Y; Nagase S; Iga T; Hanano M
    Drug Metab Dispos; 1988; 16(3):482-9. PubMed ID: 2457477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood-brain barrier transport helps to explain discrepancies in in vivo potency between oxycodone and morphine.
    Boström E; Hammarlund-Udenaes M; Simonsson US
    Anesthesiology; 2008 Mar; 108(3):495-505. PubMed ID: 18292687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain iron homeostasis.
    Moos T
    Dan Med Bull; 2002 Nov; 49(4):279-301. PubMed ID: 12553165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microdialysis evaluation of atomoxetine brain penetration and central nervous system pharmacokinetics in rats.
    Kielbasa W; Kalvass JC; Stratford R
    Drug Metab Dispos; 2009 Jan; 37(1):137-42. PubMed ID: 18936112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined PET and microdialysis for in vivo estimation of drug blood-brain barrier transport and brain unbound concentrations.
    Gustafsson S; Eriksson J; Syvänen S; Eriksson O; Hammarlund-Udenaes M; Antoni G
    Neuroimage; 2017 Jul; 155():177-186. PubMed ID: 28467891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacokinetics of diazepam in the rat: influence of an experimentally induced hepatic injury.
    Diaz-Garcia JM; Oliver-Botana J; Fos Galve D
    Eur J Drug Metab Pharmacokinet; 1991; Spec No 3():94-101. PubMed ID: 1820943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative investigation of the impact of P-glycoprotein inhibition on drug transport across blood-brain barrier in rats.
    Sugimoto H; Hirabayashi H; Kimura Y; Furuta A; Amano N; Moriwaki T
    Drug Metab Dispos; 2011 Jan; 39(1):8-14. PubMed ID: 20962062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diphenhydramine active uptake at the blood-brain barrier and its interaction with oxycodone in vitro and in vivo.
    Sadiq MW; Borgs A; Okura T; Shimomura K; Kato S; Deguchi Y; Jansson B; Björkman S; Terasaki T; Hammarlund-Udenaes M
    J Pharm Sci; 2011 Sep; 100(9):3912-23. PubMed ID: 21472729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Albumin as a potential membrane transport barrier for hepatic clearance of diazepam studied by a universal organ clearance approach.
    Chiou WL
    Res Commun Chem Pathol Pharmacol; 1987 Apr; 56(1):121-4. PubMed ID: 3589146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug-protein binding and blood-brain barrier permeability.
    Tanaka H; Mizojiri K
    J Pharmacol Exp Ther; 1999 Mar; 288(3):912-8. PubMed ID: 10027826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.