These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 27940539)

  • 1. Contribution of Pentose Catabolism to Molecular Hydrogen Formation by Targeted Disruption of Arabinose Isomerase (araA) in the Hyperthermophilic Bacterium Thermotoga maritima.
    White D; Singh R; Rudrappa D; Mateo J; Kramer L; Freese L; Blum P
    Appl Environ Microbiol; 2017 Feb; 83(4):. PubMed ID: 27940539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncoupling Fermentative Synthesis of Molecular Hydrogen from Biomass Formation in Thermotoga maritima.
    Singh R; White D; Demirel Y; Kelly R; Noll K; Blum P
    Appl Environ Microbiol; 2018 Sep; 84(17):. PubMed ID: 29959252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of the ATPase Subunit of the Primary Maltose Transporter in the Hyperthermophilic Anaerobe Thermotoga maritima.
    Singh R; White D; Blum P
    Appl Environ Microbiol; 2017 Sep; 83(18):. PubMed ID: 28687653
    [No Abstract]   [Full Text] [Related]  

  • 4. Characterization of a thermostable L-arabinose (D-galactose) isomerase from the hyperthermophilic eubacterium Thermotoga maritima.
    Lee DW; Jang HJ; Choe EA; Kim BC; Lee SJ; Kim SB; Hong YH; Pyun YR
    Appl Environ Microbiol; 2004 Mar; 70(3):1397-404. PubMed ID: 15006759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemically applied potentials induce growth and metabolic shift changes in the hyperthermophilic bacterium Thermotoga maritima MSB8.
    Hirano SI; Matsumoto N
    Biosci Biotechnol Biochem; 2017 Aug; 81(8):1619-1626. PubMed ID: 28537196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biohydrogen production from hyperthermophilic anaerobic digestion of fruit and vegetable wastes in seawater: Simplification of the culture medium of Thermotoga maritima.
    Saidi R; Liebgott PP; Gannoun H; Ben Gaida L; Miladi B; Hamdi M; Bouallagui H; Auria R
    Waste Manag; 2018 Jan; 71():474-484. PubMed ID: 29030117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. H(2) synthesis from pentoses and biomass in Thermotoga spp.
    Eriksen NT; Riis ML; Holm NK; Iversen N
    Biotechnol Lett; 2011 Feb; 33(2):293-300. PubMed ID: 20960218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of carbon and nitrogen sources on growth dynamics and exopolysaccharide production for the hyperthermophilic archaeon Thermococcus litoralis and bacterium Thermotoga maritima.
    Rinker KD; Kelly RM
    Biotechnol Bioeng; 2000 Sep; 69(5):537-47. PubMed ID: 10898863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome sequence of Thermotoga sp. strain RQ2, a hyperthermophilic bacterium isolated from a geothermally heated region of the seafloor near Ribeira Quente, the Azores.
    Swithers KS; DiPippo JL; Bruce DC; Detter C; Tapia R; Han S; Saunders E; Goodwin LA; Han J; Woyke T; Pitluck S; Pennacchio L; Nolan M; Mikhailova N; Lykidis A; Land ML; Brettin T; Stetter KO; Nelson KE; Gogarten JP; Noll KM
    J Bacteriol; 2011 Oct; 193(20):5869-70. PubMed ID: 21952543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An expression-driven approach to the prediction of carbohydrate transport and utilization regulons in the hyperthermophilic bacterium Thermotoga maritima.
    Conners SB; Montero CI; Comfort DA; Shockley KR; Johnson MR; Chhabra SR; Kelly RM
    J Bacteriol; 2005 Nov; 187(21):7267-82. PubMed ID: 16237010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen production by the hyperthermophilic bacterium
    Boileau C; Auria R; Davidson S; Casalot L; Christen P; Liebgott PP; Combet-Blanc Y
    Biotechnol Biofuels; 2016; 9():269. PubMed ID: 28018486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a selection system for the detection of L-ribose isomerase expressing mutants of Escherichia coli.
    De Muynck C; Van der Borght J; De Mey M; De Maeseneire SL; Van Bogaert IN; Beauprez J; Soetaert W; Vandamme E
    Appl Microbiol Biotechnol; 2007 Oct; 76(5):1051-7. PubMed ID: 17619876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-production of hydrogen and ethanol from glucose in
    Sundara Sekar B; Seol E; Park S
    Biotechnol Biofuels; 2017; 10():85. PubMed ID: 28360941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic conversion of D-galactose to D-tagatose: heterologous expression and characterisation of a thermostable L-arabinose isomerase from Thermoanaerobacter mathranii.
    Jørgensen F; Hansen OC; Stougaard P
    Appl Microbiol Biotechnol; 2004 Jun; 64(6):816-22. PubMed ID: 15168095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning, expression and characterization of L-arabinose isomerase from Thermotoga neapolitana: bioconversion of D-galactose to D-tagatose using the enzyme.
    Kim BC; Lee YH; Lee HS; Lee DW; Choe EA; Pyun YR
    FEMS Microbiol Lett; 2002 Jun; 212(1):121-6. PubMed ID: 12076797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production.
    Schut GJ; Adams MW
    J Bacteriol; 2009 Jul; 191(13):4451-7. PubMed ID: 19411328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Thermotoga maritima phenotype is impacted by syntrophic interaction with Methanococcus jannaschii in hyperthermophilic coculture.
    Johnson MR; Conners SB; Montero CI; Chou CJ; Shockley KR; Kelly RM
    Appl Environ Microbiol; 2006 Jan; 72(1):811-8. PubMed ID: 16391122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A histidine gene cluster of the hyperthermophile Thermotoga maritima: sequence analysis and evolutionary significance.
    Thoma R; Schwander M; Liebl W; Kirschner K; Sterner R
    Extremophiles; 1998 Nov; 2(4):379-89. PubMed ID: 9827326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The hyperthermophilic anaerobe Thermotoga Maritima is able to cope with limited amount of oxygen: insights into its defence strategies.
    Le Fourn C; Fardeau ML; Ollivier B; Lojou E; Dolla A
    Environ Microbiol; 2008 Jul; 10(7):1877-87. PubMed ID: 18397308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional analysis of dynamic heat-shock response by the hyperthermophilic bacterium Thermotoga maritima.
    Pysz MA; Ward DE; Shockley KR; Montero CI; Conners SB; Johnson MR; Kelly RM
    Extremophiles; 2004 Jun; 8(3):209-17. PubMed ID: 14991425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.