These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 2794118)

  • 21. Postnatal development of brainstem serotonin-containing neurons projecting to lumbar spinal cord in rats.
    Tanaka H; Amamiya S; Miura N; Araki A; Ohinata J; Fujieda K
    Brain Dev; 2006 Oct; 28(9):586-91. PubMed ID: 16730936
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Developmental changes in density and distribution of serotoninergic fibers in the chick spinal cord.
    Kojima T; Homma S; Sako H; Shimizu I; Okada A; Okado N
    J Comp Neurol; 1988 Jan; 267(4):580-9. PubMed ID: 3346378
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Descending propriospinal axons in the hindlimb enlargement of the red-eared turtle: cells of origin and funicular courses.
    Berkowitz A; Stein PS
    J Comp Neurol; 1994 Aug; 346(3):321-36. PubMed ID: 7527804
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Immunohistochemical evidence of indolamine neurons in monkey spinal cord.
    Lamotte CC; Johns DR; de Lanerolle NC
    J Comp Neurol; 1982 Apr; 206(4):359-70. PubMed ID: 7047583
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrastructure of descending serotoninergic axonal endings in layers I and II of the dorsal horn.
    Ruda M; Allen B; Gobel S
    J Physiol (Paris); 1981; 77(2-3):205-9. PubMed ID: 7288639
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Immunoreactive TRPV-2 (VRL-1), a capsaicin receptor homolog, in the spinal cord of the rat.
    Lewinter RD; Skinner K; Julius D; Basbaum AI
    J Comp Neurol; 2004 Mar; 470(4):400-8. PubMed ID: 14961565
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Branched oxytocinergic innervations from the paraventricular hypothalamic nuclei to superficial layers in the spinal cord.
    Condés-Lara M; Martínez-Lorenzana G; Rojas-Piloni G; Rodríguez-Jiménez J
    Brain Res; 2007 Jul; 1160():20-9. PubMed ID: 17599811
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A system of rat spinal cord lamina 1 cells projecting through the contralateral dorsolateral funiculus.
    McMahon SB; Wall PD
    J Comp Neurol; 1983 Feb; 214(2):217-23. PubMed ID: 6841684
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Long ascending propriospinal projections from lumbosacral to upper cervical spinal cord in the rat.
    Dutton RC; Carstens MI; Antognini JF; Carstens E
    Brain Res; 2006 Nov; 1119(1):76-85. PubMed ID: 16996042
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The spinothalamic tract: an examination of the cells of origin of the dorsolateral and ventral spinothalamic pathways in cats.
    Jones MW; Apkarian AV; Stevens RT; Hodge CJ
    J Comp Neurol; 1987 Jun; 260(3):349-61. PubMed ID: 3110221
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The recovery of postural reflexes and locomotion following low thoracic hemisection in adult cats involves compensation by undamaged primary afferent pathways.
    Helgren ME; Goldberger ME
    Exp Neurol; 1993 Sep; 123(1):17-34. PubMed ID: 8405276
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spinal and trigeminal projections to the nucleus of the solitary tract: a possible substrate for somatovisceral and viscerovisceral reflex activation.
    Menétrey D; Basbaum AI
    J Comp Neurol; 1987 Jan; 255(3):439-50. PubMed ID: 3819024
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distribution of somatic and visceral primary afferent fibres within the thoracic spinal cord of the cat.
    Cervero F; Connell LA
    J Comp Neurol; 1984 Nov; 230(1):88-98. PubMed ID: 6096416
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calcitonin gene-related peptide immunoreactivity in the cat lumbosacral spinal cord and the effects of multiple dorsal rhizotomies.
    Traub RJ; Solodkin A; Ruda MA
    J Comp Neurol; 1989 Sep; 287(2):225-37. PubMed ID: 2794127
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Immunohistochemical distribution of serotonin in spinal autonomic nuclei: II. Early and late postnatal ontogeny in the rat.
    Newton BW; Burkhart AB; Hamill RW
    J Comp Neurol; 1989 Jan; 279(1):82-103. PubMed ID: 2913063
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spinal pathways mediating coeruleospinal antinociception in the rat.
    Tsuruoka M; Maeda M; Nagasawa I; Inoue T
    Neurosci Lett; 2004 May; 362(3):236-9. PubMed ID: 15158022
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The morphology and distribution of rat serotoninergic intraspinal neurons: an immunohistochemical study.
    Newton BW; Hamill RW
    Brain Res Bull; 1988 Mar; 20(3):349-60. PubMed ID: 3365563
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of serotonin immunoreactivity in the rat spinal cord and its plasticity after neonatal spinal cord lesions.
    Bregman BS
    Brain Res; 1987 Aug; 431(2):245-63. PubMed ID: 3304541
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changes in substance P and 5-HT binding in the spinal cord dorsal horn and lamina 10 after dorsolateral funiculus lesions.
    Bernau NA; Dawson SD; Kane LA; Pubols LM
    Brain Res; 1993 Jun; 613(1):106-14. PubMed ID: 7688641
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Serotonin is found in myelinated axons of the dorsolateral funiculus in monkeys.
    Westlund KN; Lu Y; Coggeshall RE; Willis WD
    Neurosci Lett; 1992 Jul; 141(1):35-8. PubMed ID: 1508397
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.