These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 27941302)
1. Effects of downregulating TEAD4 transcripts by RNA interference on early development of bovine embryos. Sakurai N; Takahashi K; Emura N; Hashizume T; Sawai K J Reprod Dev; 2017 Apr; 63(2):135-142. PubMed ID: 27941302 [TBL] [Abstract][Full Text] [Related]
2. TEAD4 regulates trophectoderm differentiation upstream of CDX2 in a GATA3-independent manner in the human preimplantation embryo. Stamatiadis P; Cosemans G; Boel A; Menten B; De Sutter P; Stoop D; Chuva de Sousa Lopes SM; Lluis F; Coucke P; Heindryckx B Hum Reprod; 2022 Jul; 37(8):1760-1773. PubMed ID: 35700449 [TBL] [Abstract][Full Text] [Related]
3. Changes in the expression patterns of the genes involved in the segregation and function of inner cell mass and trophectoderm lineages during porcine preimplantation development. Fujii T; Sakurai N; Osaki T; Iwagami G; Hirayama H; Minamihashi A; Hashizume T; Sawai K J Reprod Dev; 2013; 59(2):151-8. PubMed ID: 23257836 [TBL] [Abstract][Full Text] [Related]
4. The necessity of TEAD4 for early development and gene expression involved in differentiation in porcine embryos. Emura N; Takahashi K; Saito Y; Sawai K J Reprod Dev; 2019 Aug; 65(4):361-368. PubMed ID: 31130592 [TBL] [Abstract][Full Text] [Related]
5. Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Nishioka N; Yamamoto S; Kiyonari H; Sato H; Sawada A; Ota M; Nakao K; Sasaki H Mech Dev; 2008; 125(3-4):270-83. PubMed ID: 18083014 [TBL] [Abstract][Full Text] [Related]
6. The Necessity of OCT-4 and CDX2 for Early Development and Gene Expression Involved in Differentiation of Inner Cell Mass and Trophectoderm Lineages in Bovine Embryos. Sakurai N; Takahashi K; Emura N; Fujii T; Hirayama H; Kageyama S; Hashizume T; Sawai K Cell Reprogram; 2016 Oct; 18(5):309-318. PubMed ID: 27500421 [TBL] [Abstract][Full Text] [Related]
7. Sox2 is essential for formation of trophectoderm in the preimplantation embryo. Keramari M; Razavi J; Ingman KA; Patsch C; Edenhofer F; Ward CM; Kimber SJ PLoS One; 2010 Nov; 5(11):e13952. PubMed ID: 21103067 [TBL] [Abstract][Full Text] [Related]
8. The role of TEAD4 in trophectoderm commitment and development is not conserved in non-rodent mammals. Pérez-Gómez A; González-Brusi L; Flores-Borobia I; Galiano-Cogolludo B; Lamas-Toranzo I; Hamze JG; Toledano-Díaz A; Santiago-Moreno J; Ramos-Ibeas P; Bermejo-Álvarez P Development; 2024 Oct; 151(20):. PubMed ID: 39171364 [TBL] [Abstract][Full Text] [Related]
9. TEAD4 regulates KRT8 and YAP in preimplantation embryos in mice but not in cattle. Wu X; Shi Y; Hu B; Zhao P; Li S; Xiao L; Wang S; Zhang K Reproduction; 2024 Mar; 167(3):. PubMed ID: 38206180 [TBL] [Abstract][Full Text] [Related]
10. Altered subcellular localization of transcription factor TEAD4 regulates first mammalian cell lineage commitment. Home P; Saha B; Ray S; Dutta D; Gunewardena S; Yoo B; Pal A; Vivian JL; Larson M; Petroff M; Gallagher PG; Schulz VP; White KL; Golos TG; Behr B; Paul S Proc Natl Acad Sci U S A; 2012 May; 109(19):7362-7. PubMed ID: 22529382 [TBL] [Abstract][Full Text] [Related]
11. A transcriptional cofactor YAP regulates IFNT expression via transcription factor TEAD in bovine conceptuses. Kusama K; Bai R; Sakurai T; Bai H; Ideta A; Aoyagi Y; Imakawa K Domest Anim Endocrinol; 2016 Oct; 57():21-30. PubMed ID: 27315596 [TBL] [Abstract][Full Text] [Related]
12. Deciphering a distinct regulatory network of TEAD4, CDX2 and GATA3 in humans for trophoblast transition from embryonic stem cells. Xiao L; Ma L; Wang Z; Yu Y; Lye SJ; Shan Y; Wei Y Biochim Biophys Acta Mol Cell Res; 2020 Sep; 1867(9):118736. PubMed ID: 32389642 [TBL] [Abstract][Full Text] [Related]
13. A framework for TRIM21-mediated protein depletion in early mouse embryos: recapitulation of Tead4 null phenotype over three days. Israel S; Casser E; Drexler HCA; Fuellen G; Boiani M BMC Genomics; 2019 Oct; 20(1):755. PubMed ID: 31638890 [TBL] [Abstract][Full Text] [Related]
14. Aberrant expression patterns of genes involved in segregation of inner cell mass and trophectoderm lineages in bovine embryos derived from somatic cell nuclear transfer. Fujii T; Moriyasu S; Hirayama H; Hashizume T; Sawai K Cell Reprogram; 2010 Oct; 12(5):617-25. PubMed ID: 20726774 [TBL] [Abstract][Full Text] [Related]
15. OCT-4 expression is essential for the segregation of trophectoderm lineages in porcine preimplantation embryos. Emura N; Sakurai N; Takahashi K; Hashizume T; Sawai K J Reprod Dev; 2016 Aug; 62(4):401-8. PubMed ID: 27210587 [TBL] [Abstract][Full Text] [Related]
16. Functional role of GATA3 and CDX2 in lineage specification during bovine early embryonic development. Shi Y; Hu B; Wang Z; Wu X; Luo L; Li S; Wang S; Zhang K; Wang H Reproduction; 2023 Mar; 165(3):325-333. PubMed ID: 36630554 [TBL] [Abstract][Full Text] [Related]
17. Cell polarity regulator PARD6B is essential for trophectoderm formation in the preimplantation mouse embryo. Alarcon VB Biol Reprod; 2010 Sep; 83(3):347-58. PubMed ID: 20505164 [TBL] [Abstract][Full Text] [Related]
18. Roles of ERα during mouse trophectoderm lineage differentiation: revealed by antagonist and agonist of ERα. Cheng X; Xu S; Song C; He L; Lian X; Liu Y; Wei J; Pang L; Wang S Dev Growth Differ; 2016 Apr; 58(3):327-38. PubMed ID: 27037955 [TBL] [Abstract][Full Text] [Related]
19. Repression of Ets-2-induced transactivation of the tau interferon promoter by Oct-4. Ezashi T; Ghosh D; Roberts RM Mol Cell Biol; 2001 Dec; 21(23):7883-91. PubMed ID: 11689681 [TBL] [Abstract][Full Text] [Related]
20. Reciprocal regulation of TEAD4 and CCN2 for the trophectoderm development of the bovine blastocyst. Akizawa H; Kobayashi K; Bai H; Takahashi M; Kagawa S; Nagatomo H; Kawahara M Reproduction; 2018 Jun; 155(6):563-571. PubMed ID: 29661794 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]