These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 2794137)

  • 1. Immunohistochemical localization of GAP-43 in the developing hamster retinofugal pathway.
    Moya KL; Jhaveri S; Schneider GE; Benowitz LI
    J Comp Neurol; 1989 Oct; 288(1):51-8. PubMed ID: 2794137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early postnatal expression of L1 by retinal fibers in the optic tract and synaptic targets of the Syrian hamster.
    Lyckman AW; Moya KL; Confaloni A; Jhaveri S
    J Comp Neurol; 2000 Jul; 423(1):40-51. PubMed ID: 10861535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental shift of synaptic vesicle protein 2 from axons to terminals in the primary visual projection of the hamster.
    Confaloni A; Lyckman AW; Moya KL
    Neuroscience; 1997 Apr; 77(4):1225-36. PubMed ID: 9130800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of nitric oxide in the development of retinal projections.
    Vercelli A; Garbossa D; Repici M; Biasiol S; Jhaveri S
    Ital J Anat Embryol; 2001; 106(2 Suppl 1):489-98. PubMed ID: 11729994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glial environment in the developing superior colliculus of hamsters in relation to the timing of retinal axon ingrowth.
    Wu DY; Jhaveri S; Schneider GE
    J Comp Neurol; 1995 Jul; 358(2):206-18. PubMed ID: 7560282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of primary visual projections occurs entirely postnatally in the fat-tailed dunnart, a marsupial mouse, Sminthopsis crassicaudata.
    Dunlop SA; Tee LB; Lund RD; Beazley LD
    J Comp Neurol; 1997 Jul; 384(1):26-40. PubMed ID: 9214538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Initial stages of retinofugal axon development in the hamster: evidence for two distinct modes of growth.
    Jhaveri S; Edwards MA; Schneider GE
    Exp Brain Res; 1991; 87(2):371-82. PubMed ID: 1722759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in rapidly transported proteins in developing hamster retinofugal axons.
    Moya KL; Benowitz LI; Jhaveri S; Schneider GE
    J Neurosci; 1988 Dec; 8(12):4445-54. PubMed ID: 3199185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prenatal and postnatal development of retinogeniculate and retinocollicular projections in the mouse.
    Godement P; Salaün J; Imbert M
    J Comp Neurol; 1984 Dec; 230(4):552-75. PubMed ID: 6520251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic response to optic centers to visual stimuli in the albino rat: anatomical and physiological considerations.
    Toga AW; Collins RC
    J Comp Neurol; 1981 Jul; 199(4):443-64. PubMed ID: 6168665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tenascin in the developing chick visual system: distribution and potential role as a modulator of retinal axon growth.
    Perez RG; Halfter W
    Dev Biol; 1993 Mar; 156(1):278-92. PubMed ID: 7680630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patterns of expression of brain-derived neurotrophic factor and tyrosine kinase B mRNAs and distribution and ultrastructural localization of their proteins in the visual pathway of the adult rat.
    Avwenagha O; Bird MM; Lieberman AR; Yan Q; Campbell G
    Neuroscience; 2006 Jul; 140(3):913-28. PubMed ID: 16626872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in rapidly transported proteins associated with development of abnormal projections in the diencephalon.
    Moya KL; Benowitz LI; Sabel BA; Schneider GE
    Brain Res; 1992 Jul; 586(2):265-72. PubMed ID: 1381651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tenascin protein and mRNA in the avian visual system: distribution and potential contribution to retinotectal development.
    Perez RG; Halfter W
    Perspect Dev Neurobiol; 1994; 2(1):75-87. PubMed ID: 7530146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postnatal development of primary visual projections in the tammar wallaby (Macropus eugenii).
    Wye-Dvorak J
    J Comp Neurol; 1984 Oct; 228(4):491-508. PubMed ID: 6490967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of low affinity NGF (p75) receptors in rat superior colliculus: studies in vivo, in vitro, and in fetal tectal grafts.
    Harvey AR
    Exp Neurol; 1994 Dec; 130(2):237-49. PubMed ID: 7867753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes of immunocytochemical localization of vesicular glutamate transporters in the rat visual system after the retinofugal denervation.
    Fujiyama F; Hioki H; Tomioka R; Taki K; Tamamaki N; Nomura S; Okamoto K; Kaneko T
    J Comp Neurol; 2003 Oct; 465(2):234-49. PubMed ID: 12949784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The optic tract in embryonic hamsters: fasciculation, defasciculation, and other rearrangements of retinal axons.
    Jhaveri S; Erzurumlu RS; Schneider GE
    Vis Neurosci; 1996; 13(2):359-74. PubMed ID: 8737287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunoreactivity to synaptosomal-associated protein-25 in developing rat retinas: effects of a glutamate agonist and retinal transplantation to a host brain.
    Chen ST; Garey LJ; Jen LS
    J Hirnforsch; 1998; 39(2):253-62. PubMed ID: 10022349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laminar histochemical and cytochemical localization of cytochrome oxidase in the goldfish retina and optic tectum in response to deafferentation and during regeneration.
    Kageyama GH; Meyer RL
    J Comp Neurol; 1988 Dec; 278(4):521-42. PubMed ID: 2852682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.