These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
322 related articles for article (PubMed ID: 27941760)
41. Discovery of a potent small molecule inhibiting Huntington's disease (HD) pathogenesis via targeting CAG repeats RNA and Poly Q protein. Khan E; Mishra SK; Mishra R; Mishra A; Kumar A Sci Rep; 2019 Nov; 9(1):16872. PubMed ID: 31728006 [TBL] [Abstract][Full Text] [Related]
42. Huntington's disease--like 2 is associated with CUG repeat-containing RNA foci. Rudnicki DD; Holmes SE; Lin MW; Thornton CA; Ross CA; Margolis RL Ann Neurol; 2007 Mar; 61(3):272-82. PubMed ID: 17387722 [TBL] [Abstract][Full Text] [Related]
43. NMR structures of small molecules bound to a model of an RNA CUG repeat expansion. Chen JL; Taghavi A; Frank AJ; Fountain MA; Choudhary S; Roy S; Childs-Disney JL; Disney MD bioRxiv; 2024 Jun; ():. PubMed ID: 38948793 [TBL] [Abstract][Full Text] [Related]
44. Crystallization and preliminary X-ray analysis of RNA oligomers containing CUG repeats which induce type 1 myotonic dystrophy. Sato Y; Kimura K; Takénaka A Nucleic Acids Symp Ser (Oxf); 2004; (48):117-8. PubMed ID: 17150506 [TBL] [Abstract][Full Text] [Related]
45. Nuclear RNA foci in the heart in myotonic dystrophy. Mankodi A; Lin X; Blaxall BC; Swanson MS; Thornton CA Circ Res; 2005 Nov; 97(11):1152-5. PubMed ID: 16254211 [TBL] [Abstract][Full Text] [Related]
46. Structure of the myotonic dystrophy type 2 RNA and designed small molecules that reduce toxicity. Childs-Disney JL; Yildirim I; Park H; Lohman JR; Guan L; Tran T; Sarkar P; Schatz GC; Disney MD ACS Chem Biol; 2014 Feb; 9(2):538-550. PubMed ID: 24341895 [TBL] [Abstract][Full Text] [Related]
47. Altered expression of CUG binding protein 1 mRNA in myotonic dystrophy 1: possible RNA-RNA interaction. Watanabe T; Takagi A; Sasagawa N; Ishiura S; Nakase H Neurosci Res; 2004 May; 49(1):47-54. PubMed ID: 15099703 [TBL] [Abstract][Full Text] [Related]
48. RNA FISH for detecting expanded repeats in human diseases. Urbanek MO; Krzyzosiak WJ Methods; 2016 Apr; 98():115-123. PubMed ID: 26615955 [TBL] [Abstract][Full Text] [Related]
49. LDB3 splicing abnormalities are specific to skeletal muscles of patients with myotonic dystrophy type 1 and alter its PKC binding affinity. Yamashita Y; Matsuura T; Kurosaki T; Amakusa Y; Kinoshita M; Ibi T; Sahashi K; Ohno K Neurobiol Dis; 2014 Sep; 69():200-5. PubMed ID: 24878509 [TBL] [Abstract][Full Text] [Related]
50. Myotonic dystrophy associated expanded CUG repeat muscleblind positive ribonuclear foci are not toxic to Drosophila. Houseley JM; Wang Z; Brock GJ; Soloway J; Artero R; Perez-Alonso M; O'Dell KM; Monckton DG Hum Mol Genet; 2005 Mar; 14(6):873-83. PubMed ID: 15703191 [TBL] [Abstract][Full Text] [Related]
51. Staufen1 impairs stress granule formation in skeletal muscle cells from myotonic dystrophy type 1 patients. Ravel-Chapuis A; Klein Gunnewiek A; Bélanger G; Crawford Parks TE; Côté J; Jasmin BJ Mol Biol Cell; 2016 Jun; 27(11):1728-39. PubMed ID: 27030674 [TBL] [Abstract][Full Text] [Related]
52. Reduced cytoplasmic MBNL1 is an early event in a brain-specific mouse model of myotonic dystrophy. Wang PY; Lin YM; Wang LH; Kuo TY; Cheng SJ; Wang GS Hum Mol Genet; 2017 Jun; 26(12):2247-2257. PubMed ID: 28369378 [TBL] [Abstract][Full Text] [Related]
53. Exploring the Potential of Small Molecule-Based Therapeutic Approaches for Targeting Trinucleotide Repeat Disorders. Verma AK; Khan E; Bhagwat SR; Kumar A Mol Neurobiol; 2020 Jan; 57(1):566-584. PubMed ID: 31399954 [TBL] [Abstract][Full Text] [Related]
54. Methods to enable the design of bioactive small molecules targeting RNA. Disney MD; Yildirim I; Childs-Disney JL Org Biomol Chem; 2014 Feb; 12(7):1029-39. PubMed ID: 24357181 [TBL] [Abstract][Full Text] [Related]
55. Nucleic Acid-Targeted Small Molecules have Therapeutic Potential in the Treatment of Spinal Muscular Atrophy: Small-molecule drugs that can selectively bind RNA and modulate pre-mRNA splicing have potential as a treatment strategy for human disease, including spinal muscular atrophy. Am J Med Genet A; 2018 Aug; 176(8):1698-1699. PubMed ID: 30136439 [No Abstract] [Full Text] [Related]
56. Recent advances in the development of small molecules targeting RNA G-quadruplexes for drug discovery. Tao Y; Zheng Y; Zhai Q; Wei D Bioorg Chem; 2021 May; 110():104804. PubMed ID: 33740677 [TBL] [Abstract][Full Text] [Related]
57. Design, Optimization, and Study of Small Molecules That Target Tau Pre-mRNA and Affect Splicing. Chen JL; Zhang P; Abe M; Aikawa H; Zhang L; Frank AJ; Zembryski T; Hubbs C; Park H; Withka J; Steppan C; Rogers L; Cabral S; Pettersson M; Wager TT; Fountain MA; Rumbaugh G; Childs-Disney JL; Disney MD J Am Chem Soc; 2020 May; 142(19):8706-8727. PubMed ID: 32364710 [TBL] [Abstract][Full Text] [Related]
58. Identifying and validating small molecules interacting with RNA (SMIRNAs). Disney MD; Velagapudi SP; Li Y; Costales MG; Childs-Disney JL Methods Enzymol; 2019; 623():45-66. PubMed ID: 31239057 [TBL] [Abstract][Full Text] [Related]
59. Targeting RNA in mammalian systems with small molecules. Donlic A; Hargrove AE Wiley Interdiscip Rev RNA; 2018 Jul; 9(4):e1477. PubMed ID: 29726113 [TBL] [Abstract][Full Text] [Related]
60. Affinity capillary electrophoresis for identification of active drug candidates in myotonic dystrophy type 1. Neaga IO; Hambye S; Bodoki E; Palmieri C; Ansseau E; Belayew A; Oprean R; Blankert B Anal Bioanal Chem; 2018 Jul; 410(18):4495-4507. PubMed ID: 29736701 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]