BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 27942684)

  • 1. Rapid dynamics of cell-shape recovery in response to local deformations.
    Haase K; Shendruk TN; Pelling AE
    Soft Matter; 2017 Jan; 13(3):567-577. PubMed ID: 27942684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resiliency of the plasma membrane and actin cortex to large-scale deformation.
    Haase K; Pelling AE
    Cytoskeleton (Hoboken); 2013 Sep; 70(9):494-514. PubMed ID: 23929821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the actin cortex in maintaining cell shape.
    Haase K; Pelling AE
    Commun Integr Biol; 2013 Nov; 6(6):e26714. PubMed ID: 24349607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of sequential cyclic compression on cancer cells in a flexible microdevice.
    Onal S; Alkaisi MM; Nock V
    PLoS One; 2023; 18(1):e0279896. PubMed ID: 36602956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protrusion, contraction and segregation of membrane components associated with passive deformation and shape recovery of Walker carcinosarcoma cells.
    Schütz K; Keller H
    Eur J Cell Biol; 1998 Oct; 77(2):100-10. PubMed ID: 9840459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Actin-myosin network influences morphological response of neuronal cells to altered osmolarity.
    Bober BG; Love JM; Horton SM; Sitnova M; Shahamatdar S; Kannan A; Shah SB
    Cytoskeleton (Hoboken); 2015 Apr; 72(4):193-206. PubMed ID: 25809276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension.
    Wang N; Ingber DE
    Biophys J; 1994 Jun; 66(6):2181-9. PubMed ID: 8075352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical plasticity of cells.
    Bonakdar N; Gerum R; Kuhn M; Spörrer M; Lippert A; Schneider W; Aifantis KE; Fabry B
    Nat Mater; 2016 Oct; 15(10):1090-4. PubMed ID: 27376682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying the contribution of actin networks to the elastic strength of fibroblasts.
    Ananthakrishnan R; Guck J; Wottawah F; Schinkinger S; Lincoln B; Romeyke M; Moon T; Käs J
    J Theor Biol; 2006 Sep; 242(2):502-16. PubMed ID: 16720032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emergence of large-scale cell morphology and movement from local actin filament growth dynamics.
    Lacayo CI; Pincus Z; VanDuijn MM; Wilson CA; Fletcher DA; Gertler FB; Mogilner A; Theriot JA
    PLoS Biol; 2007 Sep; 5(9):e233. PubMed ID: 17760506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics.
    Kumar S; Maxwell IZ; Heisterkamp A; Polte TR; Lele TP; Salanga M; Mazur E; Ingber DE
    Biophys J; 2006 May; 90(10):3762-73. PubMed ID: 16500961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chondrocyte mechanotransduction: effects of compression on deformation of intracellular organelles and relevance to cellular biosynthesis.
    Szafranski JD; Grodzinsky AJ; Burger E; Gaschen V; Hung HH; Hunziker EB
    Osteoarthritis Cartilage; 2004 Dec; 12(12):937-46. PubMed ID: 15564060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissecting the contribution of actin and vimentin intermediate filaments to mechanical phenotype of suspended cells using high-throughput deformability measurements and computational modeling.
    Gladilin E; Gonzalez P; Eils R
    J Biomech; 2014 Aug; 47(11):2598-605. PubMed ID: 24952458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mathematical model for the dynamics of large membrane deformations of isolated fibroblasts.
    Stéphanou A; Chaplain MA; Tracqui P
    Bull Math Biol; 2004 Sep; 66(5):1119-54. PubMed ID: 15294420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Viscoelastic properties of normal and cancerous human breast cells are affected differently by contact to adjacent cells.
    Schierbaum N; Rheinlaender J; Schäffer TE
    Acta Biomater; 2017 Jun; 55():239-248. PubMed ID: 28396292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discordant recovery of bone mass and mechanical properties during prolonged recovery from disuse.
    Shirazi-Fard Y; Kupke JS; Bloomfield SA; Hogan HA
    Bone; 2013 Jan; 52(1):433-43. PubMed ID: 23017660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the mechanical behavior of chondrocytes in unconfined compression tests for cyclic loading.
    Wu JZ; Herzog W
    J Biomech; 2006; 39(4):603-16. PubMed ID: 16439231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct laser manipulation reveals the mechanics of cell contacts in vivo.
    Bambardekar K; Clément R; Blanc O; Chardès C; Lenne PF
    Proc Natl Acad Sci U S A; 2015 Feb; 112(5):1416-21. PubMed ID: 25605934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vertex dynamics simulations of viscosity-dependent deformation during tissue morphogenesis.
    Okuda S; Inoue Y; Eiraku M; Adachi T; Sasai Y
    Biomech Model Mechanobiol; 2015 Apr; 14(2):413-25. PubMed ID: 25227116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ chondrocyte viscoelasticity.
    Han SK; Madden R; Abusara Z; Herzog W
    J Biomech; 2012 Sep; 45(14):2450-6. PubMed ID: 22884037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.