These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 27942691)

  • 1. Single-electron tunneling through an individual arsenic dopant in silicon.
    Shorokhov VV; Presnov DE; Amitonov SV; Pashkin YA; Krupenin VA
    Nanoscale; 2017 Jan; 9(2):613-620. PubMed ID: 27942691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequential reduction of the silicon single-electron transistor structure to atomic scale.
    Dagesyan SA; Shorokhov VV; Presnov DE; Soldatov ES; Trifonov AS; Krupenin VA
    Nanotechnology; 2017 Jun; 28(22):225304. PubMed ID: 28422045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atom devices based on single dopants in silicon nanostructures.
    Moraru D; Udhiarto A; Anwar M; Nowak R; Jablonski R; Hamid E; Tarido JC; Mizuno T; Tabe M
    Nanoscale Res Lett; 2011 Jul; 6(1):479. PubMed ID: 21801408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport spectroscopy of a single dopant in a gated silicon nanowire.
    Sellier H; Lansbergen GP; Caro J; Rogge S; Collaert N; Ferain I; Jurczak M; Biesemans S
    Phys Rev Lett; 2006 Nov; 97(20):206805. PubMed ID: 17155705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A tight-binding study of single-atom transistors.
    Ryu H; Lee S; Fuechsle M; Miwa JA; Mahapatra S; Hollenberg LC; Simmons MY; Klimeck G
    Small; 2015 Jan; 11(3):374-81. PubMed ID: 25293353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-Charge Tunneling in Codoped Silicon Nanodevices.
    Moraru D; Kaneko T; Tamura Y; Jupalli TT; Singh RS; Pandy C; Popa L; Iacomi F
    Nanomaterials (Basel); 2023 Jun; 13(13):. PubMed ID: 37446427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunneling in Systems of Coupled Dopant-Atoms in Silicon Nano-devices.
    Moraru D; Samanta A; Tyszka K; Anh le T; Muruganathan M; Mizuno T; Jablonski R; Mizuta H; Tabe M
    Nanoscale Res Lett; 2015 Dec; 10(1):372. PubMed ID: 26403925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bias spectroscopy and simultaneous single-electron transistor charge state detection of Si:P double dots.
    Mitic M; Petersson KD; Cassidy MC; Starrett RP; Gauja E; Ferguson AJ; Yang C; Jamieson DN; Clark RG; Dzurak AS
    Nanotechnology; 2008 Jul; 19(26):265201. PubMed ID: 21828673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directed Atom-by-Atom Assembly of Dopants in Silicon.
    Hudak BM; Song J; Sims H; Troparevsky MC; Humble TS; Pantelides ST; Snijders PC; Lupini AR
    ACS Nano; 2018 Jun; 12(6):5873-5879. PubMed ID: 29750507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anderson-Mott transition in arrays of a few dopant atoms in a silicon transistor.
    Prati E; Hori M; Guagliardo F; Ferrari G; Shinada T
    Nat Nanotechnol; 2012 Jul; 7(7):443-7. PubMed ID: 22751223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale parallel arrays of silicon nanowires via block copolymer directed self-assembly.
    Farrell RA; Kinahan NT; Hansel S; Stuen KO; Petkov N; Shaw MT; West LE; Djara V; Dunne RJ; Varona OG; Gleeson PG; Jung SJ; Kim HY; Koleśnik MM; Lutz T; Murray CP; Holmes JD; Nealey PF; Duesberg GS; Krstić V; Morris MA
    Nanoscale; 2012 May; 4(10):3228-36. PubMed ID: 22481430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of a single-atom electron pump.
    van der Heijden J; Tettamanzi GC; Rogge S
    Sci Rep; 2017 Mar; 7():44371. PubMed ID: 28295055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CMOS-compatible fabrication of room-temperature single-electron devices.
    Ray V; Subramanian R; Bhadrachalam P; Ma LC; Kim CU; Koh SJ
    Nat Nanotechnol; 2008 Oct; 3(10):603-8. PubMed ID: 18838999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Atom Control of Arsenic Incorporation in Silicon for High-Yield Artificial Lattice Fabrication.
    Stock TJZ; Warschkow O; Constantinou PC; Bowler DR; Schofield SR; Curson NJ
    Adv Mater; 2024 Jun; 36(24):e2312282. PubMed ID: 38380859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-donor ionization energies in a nanoscale CMOS channel.
    Pierre M; Wacquez R; Jehl X; Sanquer M; Vinet M; Cueto O
    Nat Nanotechnol; 2010 Feb; 5(2):133-7. PubMed ID: 19966793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depth-dependent imaging of individual dopant atoms in silicon.
    Voyles PM; Muller DA; Kirkland EJ
    Microsc Microanal; 2004 Apr; 10(2):291-300. PubMed ID: 15306055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A reliable method for the counting and control of single ions for single-dopant controlled devices.
    Shinada T; Kurosawa T; Nakayama H; Zhu Y; Hori M; Ohdomari I
    Nanotechnology; 2008 Aug; 19(34):345202. PubMed ID: 21730640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A single-atom transistor.
    Fuechsle M; Miwa JA; Mahapatra S; Ryu H; Lee S; Warschkow O; Hollenberg LC; Klimeck G; Simmons MY
    Nat Nanotechnol; 2012 Feb; 7(4):242-6. PubMed ID: 22343383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable graphene single electron transistor.
    Stampfer C; Schurtenberger E; Molitor F; Güttinger J; Ihn T; Ensslin K
    Nano Lett; 2008 Aug; 8(8):2378-83. PubMed ID: 18642958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabricating a silicon nanowire by using the proximity effect in electron beam lithography for investigation of the Coulomb blockade effect.
    Zhang X; Fang Z; Chen K; Xu J; Huang X
    Nanotechnology; 2011 Jan; 22(3):035302. PubMed ID: 21149960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.