These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 27942757)

  • 1. Functional dissection of the N-terminal sequence of Clostridium sp. G0005 glucoamylase: identification of components critical for folding the catalytic domain and for constructing the active site structure.
    Sakaguchi M; Matsushima Y; Nagamine Y; Matsuhashi T; Honda S; Okuda S; Ohno M; Sugahara Y; Shin Y; Oyama F; Kawakita M
    Appl Microbiol Biotechnol; 2017 Mar; 101(6):2415-2425. PubMed ID: 27942757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular cloning of a glucoamylase gene from a thermophilic Clostridium and kinetics of the cloned enzyme.
    Ohnishi H; Kitamura H; Minowa T; Sakai H; Ohta T
    Eur J Biochem; 1992 Jul; 207(2):413-8. PubMed ID: 1633799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional roles of Trp337 and Glu632 in Clostridium glucoamylase, as determined by chemical modification, mutagenesis, and the stopped-flow method.
    Ohnishi H; Matsumoto H; Sakai H; Ohta T
    J Biol Chem; 1994 Feb; 269(5):3503-10. PubMed ID: 7906268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional role of β domain in the Thermoanaerobacter tengcongensis glucoamylase.
    Li Z; Wei P; Cheng H; He P; Wang Q; Jiang N
    Appl Microbiol Biotechnol; 2014 Mar; 98(5):2091-9. PubMed ID: 23852641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the roles of hydrophobic residues in the N-terminal region of archaeal trehalase in its folding.
    Sakaguchi M; Mukaeda H; Kume A; Toyoda Y; Sakoh T; Kawakita M
    Appl Microbiol Biotechnol; 2021 Apr; 105(8):3181-3194. PubMed ID: 33791835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-function relationships in glucoamylases encoded by variant Saccharomycopsis fibuligera genes.
    Solovicová A; Christensen T; Hostinová E; Gasperík J; Sevcĭk J; Svensson B
    Eur J Biochem; 1999 Sep; 264(3):756-64. PubMed ID: 10491121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The N-terminal stem region of bovine and human beta1,4-galactosyltransferase I increases the in vitro folding efficiency of their catalytic domain from inclusion bodies.
    Boeggeman EE; Ramakrishnan B; Qasba PK
    Protein Expr Purif; 2003 Aug; 30(2):219-29. PubMed ID: 12880771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning, expression, and characterization of a thermostable glucoamylase from Thermoanaerobacter tengcongensis MB4.
    Zheng Y; Xue Y; Zhang Y; Zhou C; Schwaneberg U; Ma Y
    Appl Microbiol Biotechnol; 2010 Jun; 87(1):225-33. PubMed ID: 20155355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification and properties of an amylopullulanase, a glucoamylase, and an alpha-glucosidase in the amylolytic enzyme system of Thermoanaerobacterium thermosaccharolyticum.
    Ganghofner D; Kellermann J; Staudenbauer WL; Bronnenmeier K
    Biosci Biotechnol Biochem; 1998 Feb; 62(2):302-8. PubMed ID: 9532787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional and structural roles of the highly conserved Trp120 loop region of glucoamylase from Aspergillus awamori.
    Natarajan S; Sierks MR
    Biochemistry; 1996 Mar; 35(9):3050-8. PubMed ID: 8608145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-yield production of Saccharomycopsis fibuligera glucoamylase in Escherichia coli, refolding, and comparison of the nonglycosylated and glycosylated enzyme forms.
    Solovicová A; Gasperík J; Hostinová E
    Biochem Biophys Res Commun; 1996 Jul; 224(3):790-5. PubMed ID: 8713124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Replacement and deletion mutations in the catalytic domain and belt region of Aspergillus awamori glucoamylase to enhance thermostability.
    Liu HL; Doleyres Y; Coutinho PM; Ford C; Reilly PJ
    Protein Eng; 2000 Sep; 13(9):655-9. PubMed ID: 11054460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-function relationships in the catalytic and starch binding domains of glucoamylase.
    Coutinho PM; Reilly PJ
    Protein Eng; 1994 Mar; 7(3):393-400. PubMed ID: 8177888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning, heterologous expression, and enzymatic characterization of a novel glucoamylase GlucaM from Corallococcus sp. strain EGB.
    Li Z; Ji K; Dong W; Ye X; Wu J; Zhou J; Wang F; Chen Q; Fu L; Li S; Huang Y; Cui Z
    Protein Expr Purif; 2017 Jan; 129():122-127. PubMed ID: 26102340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of N-terminal region of Escherichia coli maltodextrin glucosidase in folding and function of the protein.
    Pastor A; Singh AK; Shukla PK; Equbal MJ; Malik ST; Singh TP; Chaudhuri TK
    Biochim Biophys Acta; 2016 Sep; 1864(9):1138-1151. PubMed ID: 27317979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure and evolution of a prokaryotic glucoamylase.
    Aleshin AE; Feng PH; Honzatko RB; Reilly PJ
    J Mol Biol; 2003 Mar; 327(1):61-73. PubMed ID: 12614608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical characteristics of C-terminal region of recombinant chitinase from Bacillus licheniformis: implication of necessity for enzyme properties.
    Chuang HH; Lin HY; Lin FP
    FEBS J; 2008 May; 275(9):2240-54. PubMed ID: 18397326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for a general role for non-catalytic thermostabilizing domains in xylanases from thermophilic bacteria.
    Fontes CM; Hazlewood GP; Morag E; Hall J; Hirst BH; Gilbert HJ
    Biochem J; 1995 Apr; 307 ( Pt 1)(Pt 1):151-8. PubMed ID: 7717969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterologous expression and structure-function relationship of low-temperature and alkaline active protease from Acinetobacter sp. IHB B 5011(MN12).
    Salwan R; Sharma V; Pal M; Kasana RC; Yadav SK; Gulati A
    Int J Biol Macromol; 2018 Feb; 107(Pt A):567-574. PubMed ID: 28916383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The C-terminal module of Chi1 from Aeromonas caviae CB101 has a function in substrate binding and hydrolysis.
    Wang FP; Li Q; Zhou Y; Li MG; Xiao X
    Proteins; 2003 Dec; 53(4):908-16. PubMed ID: 14635132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.