These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 27943012)
1. Enhancement of the direct antimicrobial activity of Lysep3 against Escherichia coli by inserting cationic peptides into its C terminus. Ma Q; Guo Z; Gao C; Zhu R; Wang S; Yu L; Qin W; Xia X; Gu J; Yan G; Lei L Antonie Van Leeuwenhoek; 2017 Mar; 110(3):347-355. PubMed ID: 27943012 [TBL] [Abstract][Full Text] [Related]
2. The antibacterial activity of E. coli bacteriophage lysin lysep3 is enhanced by fusing the Bacillus amyloliquefaciens bacteriophage endolysin binding domain D8 to the C-terminal region. Wang S; Gu J; Lv M; Guo Z; Yan G; Yu L; Du C; Feng X; Han W; Sun C; Lei L J Microbiol; 2017 May; 55(5):403-408. PubMed ID: 28124780 [TBL] [Abstract][Full Text] [Related]
3. The N-terminal and central domain of colicin A enables phage lysin to lyse Escherichia coli extracellularly. Yan G; Liu J; Ma Q; Zhu R; Guo Z; Gao C; Wang S; Yu L; Gu J; Hu D; Han W; Du R; Yang J; Lei L Antonie Van Leeuwenhoek; 2017 Dec; 110(12):1627-1635. PubMed ID: 28730370 [TBL] [Abstract][Full Text] [Related]
4. Engineering a Lysin with Intrinsic Antibacterial Activity (LysMK34) by Cecropin A Fusion Enhances Its Antibacterial Properties against Acinetobacter baumannii. Abdelkader K; Gutiérrez D; Tamés-Caunedo H; Ruas-Madiedo P; Safaan A; Khairalla AS; Gaber Y; Dishisha T; Briers Y Appl Environ Microbiol; 2022 Jan; 88(1):e0151521. PubMed ID: 34669452 [TBL] [Abstract][Full Text] [Related]
5. Genome sequencing and analysis of an Escherichia coli phage vB_EcoM-ep3 with a novel lysin, Lysep3. Lv M; Wang S; Yan G; Sun C; Feng X; Gu J; Han W; Lei L Virus Genes; 2015 Jun; 50(3):487-97. PubMed ID: 25842152 [TBL] [Abstract][Full Text] [Related]
6. Development of cationic peptide chimeric lysins based on phage lysin Lysqdvp001 and their antibacterial effects against Vibrio parahaemolyticus: A preliminary study. Ning H; Cong Y; Lin H; Wang J Int J Food Microbiol; 2021 Nov; 358():109396. PubMed ID: 34560361 [TBL] [Abstract][Full Text] [Related]
7. External lysis of Escherichia coli by a bacteriophage endolysin modified with hydrophobic amino acids. Yan G; Yang R; Fan K; Dong H; Gao C; Wang S; Yu L; Cheng Z; Lei L AMB Express; 2019 Jul; 9(1):106. PubMed ID: 31309363 [TBL] [Abstract][Full Text] [Related]
8. A genetic screen to identify bacteriophage lysins. Schuch R; Fischetti VA; Nelson DC Methods Mol Biol; 2009; 502():307-19. PubMed ID: 19082564 [TBL] [Abstract][Full Text] [Related]
9. The two-step lysis system of pneumococcal bacteriophage EJ-1 is functional in gram-negative bacteria: triggering of the major pneumococcal autolysin in Escherichia coli. Diaz E; Munthali M; Lunsdorf H; Holtje JV; Timmis KN Mol Microbiol; 1996 Feb; 19(4):667-81. PubMed ID: 8820638 [TBL] [Abstract][Full Text] [Related]
10. Identification of Three Campylobacter Lysins and Enhancement of Their Anti-Escherichia coli Efficacy Using Colicin-Based Translocation and Receptor-Binding Domain Fusion. Liu P; Dong X; Cao X; Xie Q; Huang X; Jiang J; Dai H; Tang Z; Lin Y; Feng S; Luo K Microbiol Spectr; 2023 Feb; 11(2):e0451522. PubMed ID: 36749047 [TBL] [Abstract][Full Text] [Related]
12. In vitro characterization of PlyE146, a novel phage lysin that targets Gram-negative bacteria. Larpin Y; Oechslin F; Moreillon P; Resch G; Entenza JM; Mancini S PLoS One; 2018; 13(2):e0192507. PubMed ID: 29408864 [TBL] [Abstract][Full Text] [Related]
13. Membrane permeabilization design of antimicrobial peptides based on chikungunya virus fusion domain scaffold and its antibacterial activity against gram-positive Streptococcus pneumoniae in respiratory infection. Yang R; Zhang G; Zhang F; Li Z; Huang C Biochimie; 2018 Mar; 146():139-147. PubMed ID: 29277569 [TBL] [Abstract][Full Text] [Related]
14. Bacteriophages that infect Gram-negative bacteria as source of signal-arrest-release motif lysins. Gontijo MTP; Vidigal PMP; Lopez MES; Brocchi M Res Microbiol; 2021 Mar; 172(2):103794. PubMed ID: 33347948 [TBL] [Abstract][Full Text] [Related]
15. Lysins: the arrival of pathogen-directed anti-infectives. Pastagia M; Schuch R; Fischetti VA; Huang DB J Med Microbiol; 2013 Oct; 62(Pt 10):1506-1516. PubMed ID: 23813275 [TBL] [Abstract][Full Text] [Related]
16. Facilitation of expression and purification of an antimicrobial peptide by fusion with baculoviral polyhedrin in Escherichia coli. Wei Q; Kim YS; Seo JH; Jang WS; Lee IH; Cha HJ Appl Environ Microbiol; 2005 Sep; 71(9):5038-43. PubMed ID: 16151084 [TBL] [Abstract][Full Text] [Related]
17. Sequence-Function Relationships in Phage-Encoded Bacterial Cell Wall Lytic Enzymes and Their Implications for Phage-Derived Product Design. Vázquez R; García E; García P J Virol; 2021 Jun; 95(14):e0032121. PubMed ID: 33883227 [TBL] [Abstract][Full Text] [Related]
18. Phage Lysins for Fighting Bacterial Respiratory Infections: A New Generation of Antimicrobials. Vázquez R; García E; García P Front Immunol; 2018; 9():2252. PubMed ID: 30459750 [TBL] [Abstract][Full Text] [Related]
19. A comparative study of antimicrobial properties of crustinPm1 and crustinPm7 from the black tiger shrimp Penaeus monodon. Krusong K; Poolpipat P; Supungul P; Tassanakajon A Dev Comp Immunol; 2012 Jan; 36(1):208-15. PubMed ID: 21855569 [TBL] [Abstract][Full Text] [Related]
20. Using a bacteriocin structure to engineer a phage lysin that targets Yersinia pestis. Lukacik P; Barnard TJ; Buchanan SK Biochem Soc Trans; 2012 Dec; 40(6):1503-6. PubMed ID: 23176506 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]